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Abstract
Parallel computing, as opposed to  sequential processing, plays a growing 

role in  solving increasingly complex computational problems. T rad itiona lly 
mainframes and top of the line workstations were used for scientific (high 
power) computing. This dissertation investigates parallel computing by means 
of a variable computer cluster approach. An original variable cluster, based 
on PC-class computers, was produced and implemented for the purpose of 
t his research, along w ith  the necessary algorithms and computer codes. The 
processing performance of the variable cluster was evaluated in  the case of 
different computing workloads provided by high incidence com putational al
gorithm s for one and two-dimensional FFT, as well as by Laplacian field (mesh) 
algorithm  calculations. In  order to allow for comparison w ith  other studies (for 
instance, Am dahl’s work), SpeedUp and Efficiency served as main concepts for 
the analysis of collected experimental data. Performance gain and re lia b ility  
depend on the type of computing problem, amount of data transferred, num
ber of machines participating in  the computation, as well as on the physical 
characteristics of the machines and on infrastructure. A  discrete model ex
plaining the experimental data is proposed; an additional continuous model is 
also developed. ” Resonance” workloads are to a certain extent predicted by 
our modeling, and the relation w ith  com putational performance is specified. 
Useful insights into the appropriate match between the com putational algo
rith m  and the cluster architecture are documented in our study.
The implemented computer cluster was found to be a robust p latform  th a t 
could be used for development of engineering applications requiring greater 
computing power than regular workstations can deliver. For selected cases the 
processing performance of the variable cluster scaled linearly w ith  the number 
of nodes involved in  the computation.

Keywords: D istributed Computer, Parallel Processing, FFT, Algorithm s, 
Modeling
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Chapter 1

Introduction

Sequential computers (computers tha t perform one task at a tim e) are quickly 

reaching a physical lim it regarding the speed at which they process data, which 

cannot be increased through the use of faster components. The speed of ligh t 

places an upper lim it on the performance tha t can be achieved w ith  a sequential 

architecture. For many computational problems, the tim e they take to obtain 

a solution using a sequential computer is unacceptably slow. One way out 

of th is impasse is provided by parallel computation. On a parallel computer, 

several processors cooperate to solve a problem simultaneously in  a fraction of 

the tim e required by one processor [4].

1.1 W hy Paralle l C om putation?

Parallel computers are used p rim arily  to  speed up computations. A  parallel 

algorithm  can be significantly faster than the best possible sequential solution. 

There is a growing number of applications, in  science, engineering and medicine 

tha t require computing speeds tha t cannot be delivered by any current or

1
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future conventional computers. These applications involve processing large 

amounts of data, or perform ing a large number of iterations, or sometimes 

both. The practicality of problem solution is often dictated by associated time 

constrains. The relevance of a 24 hour weather forecast may be questioned if  

it  requires 36 hours to  calculate [23, p 1]. Parallel com putation is the only 

approach known today th a t would make these computations feasible.

1.2 Cluster Computers

Engineers and scientists are the prim ary users of high performance computers. 

H istorica lly the ir options were lim ited to  a few computing platforms. Large 

problems could be solved only on mainframe computers or state of the art, 

high performance workstations. Access to mainframes is usually not very con

venient and state of the art workstations are expensive. Computer technology 

is changing in  a rapid manner and machines become obsolete as soon as they 

are delivered to  the user. I t  is also quite difficult and cumbersome to  migrate 

data, applications and system settings from  an old machine to a new one on 

a frequent basis.

Personal Computer (PC) revolution brought computers to the masses. PCs 

became common these days as calculators were several years ago. One can 

find networks of PCs in  libraries, classrooms and laboratories. W hile those 

machines are usually used on a regular basis, they spend most of the ir time 

idling, doing nothing useful. Quite often these id ling  machines are connected 

to a Local Area Network (LAN) and they can also be accessed remotely.

W hile PCs idling in  libraries are usually not high end machines, there are 

many of them and they are connected to a fast LAN. Traditional parallel com

puters have scaling problems and tend to  be very expensive. I t  is possible to
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organize several workstations into a computing cluster and u tilize  the ir id ling 

processors by scheduling and coordinating tasks tha t would be computed by 

the machines. Advantages are clear; there is no need to  purchase new hard

ware (as existing resources would be u tilized) and, w ith  clever programming, 

problems th a t could be solved only by large machines would easily be solved 

by a cluster of workstations.

1.3 Scope of the Project

The project involved the design, implementation and analysis of a computing 

cluster. Several workstations were converted in to  cluster members for the ex

periment. A  high end PC was assembled from  standard, commercially avail

able, parts and configured to administer the cluster. Several benchmarking 

applications were w ritten  and run on the cluster. The performance and ap

p lica b ility  o f the cluster were analyzed. The two most im portant performance 

aspects analyzed were speedup and efficiency.

1.4 Background of Thesis

P lentifu l and inexpensive computer hardware together w ith  free and powerful 

operating systems have led to  the advent of d istributed computing. Networks 

of W orkstations (NoWs), Clusters of W orkstations (CoWs) and computing 

clusters, such as the Linux based Beowulf cluster, have become very common 

and the ir applicability is the subject of studies in  many research institu tions. 

Flores [48] writes:

“Research in  parallel computing has tra d itiona lly  focused on mul

ticomputers and shared memory multiprocessors. Currently, net

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

C h a p t e r  1. I n t r o d u c t io n 4

works of workstations (NoWs) are being considered as a good alter

native to parallel computers. That is due to  there are high perfor

mance workstations w ith  microprocessors that challenged custom- 

made architectures. This class of workstations is w idely available 

at relatively low cost. Furthermore, these networks provide the 

w iring flex ib ility , scalability and incremental expansion required in  

this environment.”

The m ajority of the Beowulf clusters in  operation today run industria l 

benchmarks and the results o f the benchmarks are compared against commer

cial supercomputers. Performance analysis of a high performance workstation 

conducted by Trybus [134] demonstrated several problems in  SMP architec

tures. The main idea behind the conducted research was to bu ild  a distributed 

computing cluster and analyze its  performance. The main emphasis was put 

on creating an open platform  th a t could be used for conducting a variety of 

engineering experiments. Several applications were run on the cluster and its  

performance was evaluated.

1.5 Design Considerations

Several factors influenced the design of the cluster. The most notable factors 

include:

•  U tiliza tion  of standard, commercially available hardware,

•  Adaptation of standard software, operating system and networking soft

ware,

•  Scalable and expandable architecture,
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•  H igh performance to price ratio ,

•  F le x ib ility  and ease of configuration.

Researchers agree tha t such design decisions are d ifficu lt to  make. Havick [61] 

writes:

“One of the most d ifficu lt tasks in designing and commissioning 

a Beowulf cluster is considering the price/ performance trade-offs 

from  the m ultitude of possible configuration options. There are 

four crucial hardware parameters to choose in  the design of a Beo

w u lf cluster: the type of processor to use in  the nodes; amount 

of memory installed in  each node; the amount and type o f disk 

installed in  each node and the network in frastructure th a t is used to 

connect the nodes. The best options w ill depend on the particular 

application.”

Havick [61] also states tha t Beowulf clusters are typ ica lly b u ilt from  com

m odity computers, usually PCs w ith  x86 processors or workstations based on 

RISC processors.

The thesis investigates the efficacy of the selected architecture in  solv

ing a range of scientific problems and determines the performance as well as 

the efficiency of the system. The thesis also demonstrates the importance of 

the match between the algorithm  and the architecture in  achieving maximum 

computational performance.
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Chapter 2 

Cluster Computing: Theory and 

Applications

This chapter introduces the theory of cluster computing, demonstrates known 

architectures and presents applications tha t could be run on a cluster com

puter. Parallel computing lim ita tions are briefly described and Am dahl’s law 

is discussed in  some detail.

2.1 Cluster Computer Theory

In  the late 1940’s, a group of researchers at Princeton U niversity proposed 

a design th a t ushered the modern computer era. H alf a century later the 

overwhelming m a jo rity  of computers in  use follow th is orig inal design. In  such 

a design, presented in  figure 2.1, a computer consists essentially of a single 

processing un it, local memory and inp u t/o u tpu t devices. The processing un it 

executes a single sequence of instructions on a single sequence of data. Both 

instructions and data are stored in  main the memory of the computer. The

6
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Figure 2.1: von Neumann Computer Architecture

sequence o f instructions is the program, which tells the processor how to  solve 

a certain problem. The sequence of data is an instance of th a t problem. Such 

a computer performs one instruction at a tim e. Such a model of computation 

is known as sequential (or serial, or conventional) computer [4, p. 2],

A  parallel computer, by contrast has two or more processors. Such a computer 

is capable o f processing more than one sequence of instructions on one or more 

sequences o f data at the same time.

A  cluster computer is a collection o f off-the-shelf workstations connected by 

an off-the-shelf LAN  [6, p. 475]. A  typ ica l cluster configuration is shown in  

figure 2.2.

The availability of inexpensive hardware and free sophisticated operating 

systems allowed researchers and developers to  design and analyze PC clusters. 

Koski [73] writes:

“D uring recent years clustered systems using off-the-shelf proces

sors and standard Ethernet networks have been increasingly popu

lar. The m otivation has been p rim arily  the cheap price of systems, 

but also the rapid development of standard processors. So-called 

Beowulf systems have spread around the world. This development
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Figure 2.2: C luster Computer Architecture

is further accelerated by the Linux-boom  which provides an ideal 

and free operating system for these clusters.”

There are several reasons for designing and implementing cluster comupterse. 

C luster environment can be used for:

•  Fault Tolerance,

• Load Balancing,

•  High Performance Computing.

Computer fau lt tolerance is quite often implemented by the means o f identical 

or very sim ilar systems where the backup system is aware o f the state o f the
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system it  is protecting. The state of the cluster is usually preserved on a shared 

disk and the two systems have a private communication lin k  th a t is used to 

determine the ava ilab ility of the production system. Should the production 

system fa il, the backup system w ill come on line w ith  the same services tha t 

the production system offered and the state of those services w ill be the same 

as the one prio r to  the failure of the production server. Fault tolerance is 

usually implemented on mission c ritica l database servers. M icrosoft Wolfpack 

is an example of such technology [119].

Load balancing is a popular way of increasing the availability of a service by 

means of two or more systems providing the same static services or services 

th a t do not change w ith  time. An example of such a system would be a web 

server serving web pages to clients. The web content can be replicated to 

m ultip le servers, possibly located in  different parts of the world. Clients do 

not care where the inform ation comes from as long the requested inform ation is 

received. The only requirement th a t needs to be fu lfilled  is th a t the inform ation 

be consistent among a ll partic ipating cluster members.

High performance, cluster computing is driven by the follow ing factors [109, 

p. 53]:

1. Solving large problems th a t ran too slowly even on the fastest supercom

puters (simulations, scientific engineering applications).

2. Solving problems tha t were too large for any other available computer 

(multi-dim ensional F F T ’s, operation on large matrices).

3. Cost saving computing of problems tha t could be solved on existing 

albeit more expensive hardware.
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Researchers agree [142] tha t there is a renewed diffusion o f parallel p la t

forms from  symmetric multiprocessors to  PC clusters. Santoso [121] writes:

“W ith  the advent of large computing power in  workstations and 

high speed networks, the high-performance computing is moving 

from  the use of massively parallel processors (MPPs) to  cost effec

tive clusters of workstations.”

W orkstation based clusters have become a feasible alternative to expensive, 

commercially available systems.

2.1 .1  C lu ster  C om puter A rch itectu re

A form al classification of computer architectures according to  a macroscopic 

view of the ir p rincipal interaction patterns relating to instruction and data 

streams was proposed by Flynn in  1972. W hat has become the so called 

F lynn ’s taxonomy is shown in figure 2.3 [23, p. 14]. A  cluster computer

Single Multiple
Instruction Instruction

stream stream

Single Data 
stream SISD MISD

MIMDSIMDMultiple Data 
stream ■

Figure 2.3: F lynn’s Taxonomy for Processors

falls in to  the M IM D  category as it  is possible to  run m ultip le  instructions 

streams (M I) working on m ultiple data (M D) at the same time. There are two
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main architectures used for implementing cluster computers. The firs t archi

tecture, U M A (Uniform  Memory Access), uses processors tha t share common 

memory. A  more common name used for U M A systems is SMS or Shared 

Memory Systems. The second popular architecture, NUM A (Non-Uniform  

Memory Access) uses processors th a t have private memory and communicate 

v ia  a bus or a network. In  t his thesis N UM A systems are referred to  as DMS 

or D istributed Memory Systems.

Shared Memory Systems

Shared memory systems utilize  the most prevalent form  of parallel architecture 

used in  multiprocessors of small to  moderate scale. This architecture provides 

a global physical address space and access to a ll of main memory from  any 

processor [38, p. 269]. A  generic view of the SMP architecture is shown in  

figure 2.4. Two variations of the generic implementation exist; they are shown 

in  figures 2.5a and 2.5b. Figure 2.5a shows a multiprocessor computer where 

both the cache and the main memory are shared. Such architecture does not 

suffer from  the cache coherence problems but i f  the combined speed of the 

CPUs is larger than the speed of the cache serious performance degradations 

are experienced. This approach has been used for connecting very small num

bers of processors, usually 2-8. Such architectures were very popular in  the 

mid-1980’s. The architecture shown in  figure 2.5b is the most common SMP 

architecture found in modern multiprocessor systems. Each processor has its 

own cache, where it  stores instructions and data. Such architecture suffers 

from cache coherence problems [38, p. 273]; however, i f  properly implemented 

i t  delivers great performance. This architecture is used to  implement medium 

scale multiprocessors consisting of 20-30 processors.
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Figure 2.4: Shared Memory Cluster Computer

In  the SMP architecture the shared space is supported d irectly by hard

ware. User processes can read and w rite  shared v irtu a l addresses, and these 

operations are realized by ind ividual loads and stores of shared physical addres

ses. The operating system does not need to  be involved in  address translation 

because it  is provided by the hardware.

Sharing the memory uniform ly amongst a ll processors allows each proces

sor equal access to a ll memory locations. The memory in  U M A machines is 

typ ica lly  implemented in a central location w ith  the processors acquiring ac

cess across a high-speed interconnection mechanism such as a bus or crossbar 

switch. Communication and thus co-operation amongst processors is tig h tly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

C h a p t e r  2. C l u s t e r  C o m p u t i n g : T h e o r y  a n d  A p p l ic a t io n s  13

Shared MemoryShared Memory

BusShared Cache

Cache Cache Cache Cache
Bus

P3 PnP2 Pn P2P3

(b) Dedicated cache(a) Shared cache

Figure 2.5: SMP architectures

coupled and occurs w ith in  the common memory via shared variables. Some 

arb itra tion  mechanism is necessary to  prevent simultaneous updates of these 

shared variables and to  solve contention on the interconnection network [23, 

p. 29],

Scaling considerations. SMP systems use processors connected to  one 

shared bus. A  shared bus has a maximum length, and a fixed maximum 

bandwidth. These physical constraints lim it expandibility of a SMP machine. 

In  modern machines buses run at high speeds and the w id th  of the connecting 

conductors is usually no longer than a few inches. The links become slower 

w ith  length and every technology has an upper lim it on length due to power 

requirements and signal-to-noise ratio[38, p. 455]. Chip-level integration tech

nologies allow denser packaging and have been implemented by several ven

dors. The SMP systems available on the market today usually do not exceed 

64 processor configurations.
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Figure 2.6: D istributed Memory Cluster Computer

Distributed Memory Systems

Implementing a v irtu a l shared memory environment across a ll processors of 

a multiprocessor system introduces complex global communication patterns, 

as processing elements may need to  fetch data items from  anywhere w ith in  

the system. Such communications place the heaviest strain on any system. 

An answer to th is problem m ight be provided by N UM A systems. NUM A 

computers or d istributed memory systems have memory th a t is physically 

d istributed amongst the processors. The distributed memory is s till accessible 

to a ll processors; however, the access tim e w ill d iffer depending on whether 

the requested memory address is local or remote to the requesting processor. 

A  remote memory access requires communication across the interconnection 

network th a t links the processors and thus the distributed memory [23, p. 29]. 

A  generic view of the DMS architecture is presented in  figure 2.6.
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P e rfo rm ance  conside ra tions. The performance of a distributed memory 

multiprocessor depends in  large part on the efficiency of the message transfer 

system th a t provides the interface between the co-operating processors [23, 

p. 203]. Communications, by the ir nature, fa ll into the sequential processing 

category and thus can affect parallel systems’ performance. Communication 

overheads in h ib it overall system performance. Thus the efficiency of system 

communication plays a crucial role in  reducing implem entation penalties and 

in  im proving the scalability of the parallel solution of any problem. 

D istributed memory systems use message passing mechanisms to  communicate 

w ith  member computers. Communications among member computers are the 

most c ritica l points to support parallel applications in  distributed memory 

systems [54]. The most w idely used communication in  computer clusters is 

message passing on an Ethernet network.

E th e rn e t N e tw o rks  Ethernet technology was developed in  late 1972 at 

Palo A lto  Research Center (PARC) of Xerox Corporation. The design was 

successful and now Ethernet is the predominant LAN  technology. The early 

Ethernet specifications contributed substantially to  the work done by the IEEE 

of the 802.3 standard defining the CSM A/CD.

Data on an Ethernet network is transferred in  Ethernet frames which are later 

encapsulated by T C P /IP  frames. An Ethernet frame consists o f the following 

sections: l)preambie (8 bytes), 2) destination (6 bytes), 3) source (6 bytes), 

4) type/length  (2 bytes), 5) data (46-1500 bytes), 6) frame check sequence (4 

bytes). An Ethernet frame can vary in  size from 64 to  1518 bytes [86].
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Message Passing

In  figure 2.7 we can see a user level send/receive message passing abstraction 

as proposed by Culler [38, p. 39].

Match

Receive (Y, P)

Address YSend (X, Q )

Address X

Local process 
address space

Local process 
address space

Process QProcess P

Figure 2.7: User-level send/receive message-passing abstraction

There are several techniques to  accomplish member communications. There 

are widely used programming environment or too lkits for w ritin g  parallel pro

grams to run on distributed memory M IM D  hardware. Environments such as 

MPI, PVM  and Linda provide constructs tha t allow a program to  perform  the 

three essential functions [23, p.s 41-54]:

•  Define Parallel Execution

•  S tart and Stop Execution
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•  Coordinate Parallel Execution

These environments have been implemented on many parallel architectures, 

and are particu larly in  demand as possible ways to obtain parallel execution 

on LAN-connected workstations. A ll of these implementations use IP  and tend 

to  give latencies in  the m illisecond range. [6, p. 249]. From Hobs [65] we learn 

th a t execution environments b u ilt on top of an operating system such as PYM  

introduce unnecessary overheads, since many of the services provided by the 

environment are also offered by the underlying operating system.

The performance of a programming environment needs to be balanced against 

ease of use, in  particu lar in  engineering applications. Rackl [115] has deter

mined tha t in  the CORBA’s environment the data overhead is about 30% over 

p la in  TC P /IP . I t  has been determined tha t plain T C P /IP  adds hundred to 

several thousand instructions per message [48]. However, even though T C P /IP  

introduces overhead and has large latency, its overall overhead is only about 

4% o f the to ta l transfer [115]. Given the above observations, i t  was concluded 

tha t p la in T C P /IP  socket based communications w ill be used as the message 

passing mechanism in  the cluster.

One needs to  carefully design a d istributed application in  order to benefit 

from  the cluster’s combined power. Contrary to  SMS machines, the communi

cations of the DMS machines are very expensive. Matsuda [89] shows th a t the 

memory bandwidth of a current PC is at least two orders of magnitude greater 

than the bandwidth of a 10M Bit Ethernet network. A  summary of latency and 

bandwidth of common I/O devices is listed in  figures 2.8a and 2.8b. Because 

of these constrains it  is generally assumed th a t only embarrassingly parallel 

applications (tha t is, applications th a t almost never communicate) can make 

use of workstation clusters [11].
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Figure 2.8: Latency and bandwidth of I/O  devices

2.2 Parallel Processing

Almasi [6, p. 5] defines the parallel processor as:

“A large collection of processing elements that can com

municate and cooperate to solve problems fast.”

The author quickly adds tha t th is definition raises more questions than it  

answers. In  figure 2.9 we see a generic scalable parallel processor organization 

as proposed by Culler [38, p. 51].

2 .2.1 C om puta tions

Multiprocessor hardware delivers greater power than single processor equiva

lents only when it  is properly utilized [134]. The two most common techniques 

used on multiprocessor architectures are processes and threads. Quite often a 

combination of both techniques is used.
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Figure 2.9: Generic scalable multiprocessor organization.

Processes

A process is an independent program w ith  its  own memory for local variables 

and a stack for procedure calls. M ultitasking operating systems can run mul

tip le  processes simultaneously. A ll running processes are distributed evenly 

among a ll processors available in  the system. In  general, the creation of a 

process is an expensive task. The operating system has to allocate memory 

space for the process, load the process into memory and sta rt executing it. 

Once the process is started, it  is d ifficu lt and expensive to communicate w ith  

it. In  order for d istinct processes to  communicate w ith  each other they have to 

use interprocess communication techniques involving pipes and system calls. 

Processes have been extensively employed on multiuser, tim e sharing machines,
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to  u tilize  the hardware efficiently. M u lti processor SMS machines can benefit 

from m ultip le processes running concurrently. An example of such an efficient 

u tiliza tion  is a server computer running a Web server process and a Database 

process. Clients connect to the server via the Web and update data in  the 

database. The server can run both processes concurrently provided it  has 

enough processors to run them on.

Threads

A thread is an independent procedure running inside a process. A process can 

have many working threads. Threads are inexpensive to create and have fu ll 

access to  process data. This means tha t a program can have m ultip le  threads 

communicating w ith  each other via  shared variables, sim ilar to the way pro

cedures communicate w ith  each other. Thread oriented operating systems are 

capable of assigning program threads to  separate processors. This phenom

enon is very beneficial, since it  is possible to  develop m ultithreaded programs 

and take advantage of multiprocessor hardware. The operating system, run

ning a multithreaded process, would schedule the processes’ threads to run on 

d istinct processors, and thus higher throughput could be achieved [134].

Threads are commonly used on SMS machines. There have been numerous 

attem pts to  extend the thread programming paradigm to the DMS environ

ment; however, so far none has been very successful [124].

T hreads vs. Processes. Industry studies show th a t it  is much more ex

pensive to create, and context switch a process than a thread. A  new U N IX  

process takes about 11 times more tim e to  create than a new thread on the 

same computer. The same studies show th a t it  takes 5 times more tim e to  

switch between U N IX  processes than to sw itch between threads belonging to  a
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common execution environments. The context switch cost is most im portant 

because it  is incurred many times in  the lifetim e of a program [32].

2.2 .2  C om m u n ication s

D istributed applications running on a cluster computer need to  communicate 

w ith  each other and access global data. In  section 2.1.1 we learn tha t cluster 

computers fa ll in to  the M IM D  category. Such machines cannot use shared 

variables for communications. SMS systems could use inter-processes com

munications as described above. DMS machines, however run processes on 

physically d istinct machines. The most common way of communications on 

such systems are remote procedure calls, which are commonly implemented 

via sockets [20].

Data Transfer

A  network computer or computer cluster is heavily dependent on the in ter

connecting infrastructure. Such machine communicates w ith  cluster members 

using network. In  order to  evaluate performance several concepts need to  be 

identified and measured.

Data Transfer Time. The tim e required for a data transfer operation is 

generally described by a linear model:

Transfer Time =  To +  -y-[s]
B

where n is the amount of data (usually in  bytes), B  is the transfer rate o f the 

medium (in comparable units to  n, usually bytes/sec) and To is the start-up
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cost. This model is used w idely to describe a diverse collection o f operations, 

memory accesses, bus transactions, and message passing. Culler also notices 

tha t the bandw idth of a data transfer operation depends on the transfer size; 

as transfer size increases, it  approaches the asymptotic rate o f B, which is 

sometimes referred to  as r ^ .  How quickly it  approaches th is rate depends on 

the start-up cost. I t  is easily shown tha t the size at which ha lf of the peak 

bandw idth is obtained, the half-power point, is given by:

C om m u n ica tio n  Time Communication tim e is the tim e th a t is required to 

establish communication and to transfer data between cluster members. The 

follow ing model is used to describe th is operation:

Communication Tim e(n) =  Overhead +  Occupancy +  Network Delay

where Overhead is the tim e spend by the processor preparing the message and 

in itia tin g  the transfer, Occupancy is the tim e it  takes for the data to  pass 

through a ll components on the communication path (hubs, switches, routers) 

and Network Delay is the remaining communication tim e (access to media, 

collisions, etc.)

C om m unication C ost From the performance point of view the most im 

portant fact is the Communication Cost. The follow ing model was proposed 

by Culler to define the communication costs:

Communication Cost =  Frequency x (Communication Tim e - Overlap)
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where the Frequency is the number of communication operations per unit of 

work in the program and the Overlap is the portion o f the communication op

eration th a t is performed concurrently w ith  other useful work (computations 

or other communications) [38, pp. 60-63].

System  overhead

We realize th a t network communication involves more than jus t the transport 

medium. Several factors have been identified tha t contribute to the overall 

performance and capabilities of a network communication layer [68].

Context Switching. The difference between special purpose HPC systems 

and cluster workstations begins to disappear, as programs are now running 

in  a multiprocess environment. This makes context switching overhead hard 

to  avoid. This is particu larly visible when one overlaps communication w ith  

com putation.

System  Call Overhead. In  an operating system such as L inux it  is the ker

nel’s task to  access the actual networking hardware via  a system call, shielding 

the hardware from  the application for p o rta b ility  and security reasons. The 

approach also allows for sharing of the hardware between different applica

tions. I f  direct access to the hardware by an application is allowed a significant 

speed up can be obtained. This is however not acceptable for a large number 

o f application domains th a t use the network.

In te r ru p t / S igna l Latency: Network interface cards communicate w ith  CPU 

through interrupts signaling finishing sending or receiving data. Handling in-
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terrupts causes overheads. Quite often those interrupts are propagated to the 

user space and further degrades the performance.

S em antics. The semantics expected by programs or interface definitions of

ten do not match the most optim al way o f sending or receiving data. Conve

nience does not match efficiency. W hile near optim al communication speed can 

be reached for simple operations, th is w ill not be possible in  practice for more 

sophisticated operations such as m ulticasting and non-blocking operations.

Reliability. Software communication layers must deal w ith  packet loss on 

the hardware level. T C P /IP  implements th is by using sequence numbers and 

acknowledgments which in  tu rn  lead to  overhead.

2.3 Parallel Processing Examples

The previous section outlined several problems tha t a cluster designer must 

face when designing a cluster. The follow ing section gives two examples of 

th inking in  parallel.

2.3 .1  E m p ty in g  a sw im m in g  p o o l using pails.

Openshaw [109] maps parallel processing to tasks occuring in  everyday world 

using the follow ing example. Consider the problem of emptying a pool using 

a pail. I f  one worker would need T  tim e to  empty the pool then quite like ly 

ten workers would empty the pool in  approximately T j  10 tim e and N  persons 

could empty the pool in  T /N  time. We know tha t the pool is of fin ite  size 

and tha t it  contains X  pails of water. W hile th is is a clear parallel task (each 

person could carry a pa il of water independently), it  is very unlike ly th a t the
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pool would be emptied in  one u n it o f tim e if  X  workers were used. There 

are several possible aspects th a t can affect the tim e required to  complete the 

operation. For example, there m ight not be enough space to  accommodate 

more than W  workers, adding more than W  workers would cause collisions 

and serious congestion in  gaining access to the pool (shared resource). We 

can also observe th a t a possible saturation has occured when the workforce 

reached W  workers. Introducing additional workers would mean th a t some of 

the workers already working would have to be retired or slowed down.

2.3 .2  A ssem b lin g  a hard disk  using a p ip e lin e.

One m ajor disk manufacturer produces hard drives tha t are assembled sequen

tia lly  in  various plants around the world. Casing is produced in  the USA. The 

casing is then shipped to the U K where the motor is mounted. The platters 

are mounted in  Malaysia and the head assemblies are mounted in  Taiwan. The 

finished product is sent to the USA. As long as the pipeline is filled  and the 

flow can be sustained, a ll plants are working together to  produce the product. 

I t  is often the case tha t a flaw is discovered in a batch of components. The 

entire pipeline is affected by the problem. I f  the problem is discovered late 

in  the process, i t  m ight take weeks before the flow of the finished products is 

restored. The process can not be sped up by adding additional factories, as 

they w ill not help the process.

The above examples illustra te  typical problems tha t a developer must face 

while designing and implementing a parallel processing machine. Insta lling  

more processing entities than there is work w ill not help solving the problem.
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Moreover communications between the processing entities should be consid

ered and kept to  the minimum, especially i f  the processing entities do not 

share memory.

2.4 Parallel Performance

Quite often FLoating point OPerations (FLOPS) are used to  describe the com

puting power of a computer. W hile it  is possible to  use FLOPS to  describe 

the theoretical com puting power o f a cluster computer, i t  is quite often an un

realistic figure th a t does not describe the performance of a cluster computer. 

I f  one were to use FLOPS as a measure of the computing power of a cluster, 

one could use the follow ing formula:

N

Power =  Y , M ^ i n e i  FLOPS
i = l

Summing the FLOPS of a ll machines participating in  the cluster would give 

the theoretical performance of a cluster in  FLOPS. That figure could only 

be used if  a ll machines could work continously on a given problem at the ir 

peak speed. That form ula does not consider inter processor communications, 

job scheduling overhead and processor synchronization problems. Figure 2.10 

illustrates how those factors im pair overall system performance. This figure 

shows two systems. The firs t one is a single processor machine computing in  

a sequential manner. 80% of the computing tim e is spent perform ing ‘busy- 

useful’ operations and 20% of the time is spent on accessing data. The second 

system consists o f four machines computing in  parallel. F irs t we note tha t 

the to ta l execution tim e of the second machine is not four times shorter than 

the firs t. The second system has several aspects it  needs to  deal w ith. The
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busy-useful fraction is close to 20% but we also have factors such as busy 

overhead (instructions not needed in  sequential program), data remote (tim e 

spent w aiting for remote data) as well as interprocess synchronization issues 

[38, p. 157],

In  order to  describe accurately the cluster’s performance it  is proposed tha t 

two terms be used: SpeedUp and Efficiency. SpeedUp describes how much 

performance gain is achieved using the cluster. Efficiency shows how efficient 

the cluster participants utilized in  the cluster are.

S
H

50

25

■ Busy-useful I  Busy-overhead

S Data-local i  Data-remote

■ Synchronization

Seqential Computing Parallel Computing with four processors
with one processor 3

Figure 2.10: Components of execution tim e from  the perspective of an ind i
vidual processor.
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2 .4 .1  S p eed U p

SpeedUp is defined as:

_ 1TT Time required for one processor to compute a task
SnppaUT) — --------  ------------

Time required for N  processors to compute a task 

or we could also w rite  th is in  the follow ing way:

SpeedUp =

B u s y (T i7 n e ip rocessor') -)- ly c it( iiocaj  {T  ivn>e-\pToresS or)

B u s y  useful (  N )  T  D tttd igca l ( A ' )  T  S y n c h ( N )  ~{- U  Od(lT v/moi e {  U  i  -p  J3 II S JJ ov head ( N  ]

SpeedUp can be a number from  0 to N , where N  is the number of proces

sors present in  the system. Ideally we would like to achieve the so called perfect 

SpeedUp, which is a linear function: SpeedUp =  N  i.e. I f  a problem takes 

T  tim e to compute on one processor, the same problem run on N  processors 

would be computed in Perfect speedup is rarely achieved in practice. A l

gorithm s th a t achieve linear SpeedUp are called completely parallelizable, and 

not surprisingly, are highly desired [6, p. 195].

Superlinear SpeedUp

Superlinear SpeedUp is defined as a speedup tha t is greater than the number 

o f processors used. Superhnear Speedup is achieved when a large sequential 

problem can be mapped efficiently on a set of processors participating in  the 

experiment. The data and the code of a large problem quite often would not 

entirely f it  into memory and cache. Given m ultip le processors a problem could 

be divided in such way tha t every processor computes only on a fraction of the 

entire dataset. Then each processor could u tilize  its cache and registers more
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efficiently and superlinear speedup could be achieved. Superlinear speedup 

usually indicates th a t the sequential problem had cache miss or page fau lt 

problems.

2 .4 .2  Efficiency

Efficiency is a measure of parallel performance tha t is closely related to  speedup. 

We define efficiency as:

77, x x- • SpeedUpE ff ic ie n c y  = -----—-----

One could define efficiency as the average speedup per processor. In  a com

puting cluster it  is not very like ly tha t every processor w ill devote 100% of 

its  tim e to cluster computations. Efficiency measures the fraction of tim e the 

processors are being useful. The range of efficiency lies between 0 and 1. When 

efficiency is equal to 1 th is corresponds to perfect speedup of:

SpeedUp — N

Efficiency Exam ple

Consider the problem of m u ltip ly ing  a vector of 100 elements by a scalar S. 

The pseudocode to  perform such operation would be w ritten  as follows:

For i =  1 To 100 

Xi  =  X i * S  

Next i

I f  th is operation is performed on a single processor and the tim e required to
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perform one iteration is t  then the computation will take

SingleProcessorT ime =  lOOf

I f  the operation is performed on a computer w ith  eight processors, the follow

ing strategy could be employed. Each of the eight processors would perform 

equal number of m ultip lications and the remaining m ultip lications would be 

performed by a single processor. In  our case seven processors would perform 

twelve m ultip lications and one processor would perform twelve m ultip lications 

together w ith  the seven processors and then it  would perform  four m ultip lica

tions. The to ta l execution tim e would then be 12£ +  41 — lQt 

The SpeedUp is then calculated as:

SpeedUp8CPt/ =  ^  =  6.25 

The Efficiency is calculated as:

6 25
Efficiency$C p u  =  ~ g-  =  -78125 or 78.125%

The less than perfect SpeedUp is due to load imbalance.

2 .4 .3  A m d ah l s Law

There is considerable skepticism regarding the v ia b ility  of massive parallelism; 

the skepticism centers around Am dahl’s law, an argument put fo rth  by Gene 

Amdahl in  1967 [7] according to which even when the fraction of serial work 

in  a given problem is small, s, the maximum SpeedUp obtainable from even 

an in fin ite  number of parallel processors is only 1/s .

I f  N  is the number of processors, s is the fraction of tim e spent (by a serial
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processor) on serial parts of a program and p is the fraction of tim e spent (by 

a serial processor) on parts of the program tha t can be done in  parallel, then 

Am dahl’s law says th a t speedup is given by

SpeedUp =  — —̂zr
S + N

where s +  p — 1

The range of s lies between 0 and 1 (0% and 100%). When s — 0, 

then SpeedUp =  N  and perfect parallelism  is achieved. When s =  1, then 

SpeedUp =  1, and there is no benefit from  parallelism . SpeedUp is lim ited 

by the fact th a t not a ll parts of our code can be run in  parallel. Even if  an 

in fin ite  number of processors is used, the SpeedUp is s till lim ited  by 1/s [53, 

pp 24-26]. The sequential fraction s has a strong effect on SpeedUp. This 

explains the need for large problem sizes. As the problem size increases the 

opportun ity for parallelism  grows, and the sequential fraction decreases and 

reduces its importance for SpeedUp.

Quinn [114, pp 45-47] reevaluates Am dahl’s law. He states tha t i f  a large 

fraction of sequential code is identified i t  should be performed by the fastest 

partic ipating  processor and it  should preferably be overlapping other code tha t 

could be done in  parallel. Quinn also adds tha t parallel computers w ill be 

able to  compete w ith  supercomputers only i f  they have at least one processor 

capable of extremely fast sequential operation or i f  they execute algorithms 

w ith  v irtu a lly  no sequential component.
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Figure 2.11: Am dahl’s Law SpeedUp

2 .4 .4  S p eed U p  L im itations

In  practice quite often one encounters problems tha t cannot efficiently be 

solved on parallel architectures. The SpeedUp can be affected by several as

pects. Richardson [118] identifies the follow ing SpeedUp lim itations:

•  I/O

•  Memory Contention

•  A lgorithm

•  Problem Size

•  Load Imbalance

•  Sequential Code

•  Parallel Overhead
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Figure 2.12: Am dahl’s Law Efficiency

There are many problems involving continuous I/O  operations. I f  a problem 

is I/O  bound the slow (and very like ly sequential) operations take more tim e 

compared to the amount of computation.

In  the m ajority of cases computer algorithms deal w ith  any problem in  a 

sequential manner tha t is not suitable for parallel computers. Parallel versions 

of sequential algorithms need to  be designed and implemented to u tilize  parallel 

hardware. SpeedUp is almost always an increasing function of problem size. 

The size of the problem can affect the way it  can be solved. I f  a problem 

is tr iv ia l or too small to  take best advantage of a parallel computer then it  

cannot be computed efficiently on a large parallel system. In  other words, if  

there is not enough work to be done by the available processors, the system 

w ill show lim ited speedup. By the same token, i f  a problem size is fixed 

and it  can be solved w ith  a given set of processors, it  w ill not benefit from  

additional hardware. Adding more processors w ill not reduce to com putation
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tim e and in  some cases it  even increases computing time. Figure 2.13 shows 

two curves. The ‘optim um  tim e’ curve shows the execution tim e as a function 

of the number of processors present in  the system. Such result is what one 

would like to expect from  a parallel computer. A  more realistic curve is the 

‘actual tim e’ curve. The curve shows an in itia l decrease in  the time taken 

by the example problem on the parallel system up to  a certain number of 

processing elements. Beyond th is point, adding more processors actually leads 

to an increase in  computation tim e [23, p. 78].

100%
-#—  Optimum Time 

-■— Actual Time
80%

60%

40%

20%

90 100
Processors

Figure 2.13: Optim um  and actual parallel implem entation times

In  section 2.4.2 it  was demonstrated how load imbalance can affect SpeedUp 

and overall efficiency. A  designer w ill attem pt to map a given problem onto 

parallel hardware, but quite often the processors w ill have unequal workloads. 

This causes some processors to idle as they w ait for other processors to  finish 

the ir work. Am dahl’s law demonstrates the effects of the sequential part of the
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code on the overall performance. In  general, most computer programs have a 

sequential nature. This lim its  speedup as shown by Am dahl’s Law. Figures 

2.11 and 2.12 show how even a small fraction of the sequential code can affect 

the SpeedUp. Parallel programming introduces additional overhead. Parallel 

algorithm  is almost always larger and more complicated than a sequential 

equivalent. A dd itiona l processor cycles are required to create parallel regions, 

threads, synchronizing threads, and spin/blocking threads.

2.5 Performance Evaluation of the Cluster

A firs t step in  evaluating a real machine is to understand its  basic perfor

mance capabilities-that is, the performance characteristics of the prim itive  

operations provided by the programming model, communication abstraction 

and hardware/software interface. The two most common ways of evaluating 

system performance are microbenchmarks and workloads [38, pp 215-217].

2.5 .1  M icr ob enchm arks

Microbenchmarks are small, specially w ritten  programs designed to isolate 

performance characteristics such as latencies, bandwidth, overhead, etc.

Five types of microbenchmarks are used in  parallel systems:

1. Processing microbenchmarks measure the performance of the processing 

capabilities of the machine.

2. Local memory microbenchmarks determine the organization, latencies, 

and bandwidths of the levels of the memory hierarchy w ith in  the local 

node and measure the performance of local read and w rite  operations.
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3. Input-output microbenchmarks measure the characteristics o f I/O  ope

rations, such as disk reads and w rites of various strides and lengths.

4. Communication microbenchmarks measure data communication opera

tions such as message sends and receives or remove reads and writes of 

different types.

5. Synchronization microbenchmarks measure the performance of different 

types o f synchronization operations, such as locks.

The developed cluster had distributed memory; therefore, only results from  

microbenchmarks 1, 3, 4 and 5 w ill be analyzed and discussed.

For measurement purposes, microbenchmarks are usually implemented as re

peated sets of p rim itive  operations (e.g. 1000 floating point operations on data 

in  a row). They often have simple number of parameters tha t can be varied to 

obtain fu lle r characterization. For example, one can vary the amount o f data 

to  calculate, or change the number of processors processing the data.

2 .5 .2  W orkloads

Workloads can be divided into three classes:

1. Kernels

2. M ultiprogrammed workloads

3. Complete applications

Kernels are well-defined parts of real applications but are not complete applica

tions themselves. Kernels usually provide computing facilities for applications
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but do not support any communications, or vice versa. Multiprogram m ed 

workload tests involve running m ultip le applications on the same system si

multaneously. The overall performance of the system is observed. The cluster 

discussed in  th is thesis is providing computing facilities for specialized engi

neering calculations. The main objective of the workload handling capability 

should be the performance evaluation of the machine when running engineer

ing programs. Three popular applications were implemented and run on the 

cluster and the performance o f the cluster was then observed. The three ap

plications developed were: m a trix  m ultip lication, two-dimensional FFT and, 

finally, electric fie ld approximator.

M atrix Multiplication

M atrix  m ultip lica tion is a fundamental part of many complex science and en

gineering applications [23, p. 25]. The algorithm  is re latively com putationally 

intensive and is very often used to  assess the performance o f computer systems 

[10], [23], [51], [56], [70], [96].

The product of two matrices is represented as [C\ =  [A] [B ] , where the elements 

of [C\ are defined as [24]:
n

Ci,j — A ifiB k j
k~l

A  sequential m atrix m ultip lica tion algorithm  m ight be implemented in  the fo l

lowing way:
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For i  =  1 To m

For j  =  1 To 1 

C ij =  0 

For k =  1 To n

C i, j  C i j  T  ^  B h j

Next k

Next j

Next i

Such code is well suited to a highly parallel M IM D  design with processors 

powerful enough to  carry out substantial computations on the ir own [6, p. 

307]. M a trix  m u ltip lica tion  is an inherently parallel a lgorithm  w ith  well- 

defined points o f synchronization and is thus well suited to  implementation 

on a cluster computer. Consider the m ultip lica tion of two n x n  matrices per

formed by p processors. A  balanced workload is achieved by allocating each 

processor a sub-problem of computing the x  n) x (n x  j*) subm atrix of the 

problem. These operations may be carried out in  parallel by p processors. 

The best solution o f the m ultip lica tion of the two n x n  matrices on p <  n2 

processors is achieved in  O (y ) , provided tha t communication tim e is much 

smaller than com putation tim e [23, p. 32].

A  d istributed version of the m atrix  m ultip lica tion  algorithm  listed above was 

implemented and used to evaluate the cluster’s performance.

F F T

Fourier transform  is a powerful too l for many problems, and especially for 

solving various differential equations of interest in  science and engineering [50, 

p 1], The Fourier transform  algorithm  has a complexity o f 0 (n 2). The most
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popular implementations of the transform are based on an algorithm  proposed 

by Cooley and Tukey. The so called fast Fourier transform , or F F T  as we w ill 

refer to  it, has a lower computational complexity of only 0(n log (n )). Sim ilar 

to  matrix m ultip lica tion  the FFT algorithm  is frequently used to  measure the 

performance o f computer systems [6], [51], [70], [101], [117].

2D-FFT. The tw o-dimensional Fourier transform  is required in  applications 

tha t involve two-dimensional data sets, such as image processing and geophys

ical analyses [44],

Let [A] be an L  x M  2-dimensional complex m atrix. The L x M  2-dimensional 

transform  of [A] denoted by T(Al,m ) is the L x M  2-dimensional array [B] 

defined by:

M - 1 L—1
p   V '' V~' a 2 -x ir l/L  2 n is m /M
■D r,a — /  . /  , ra,™ 

m —Q 1=0

which can be w ritten  in  a compact m atrix  notation:

[B] =

This method is called row-column because it  computes [B] by a sequence of 

1-dimensional fin ite  Fourier transforms of the rows of [A] followed by a se

quence of 1-dimensional fin ite  Fourier transforms o f the resulting columns. 

The m atrix [B] is computed in  two stages. F irst an interm ediate m atrix of 

Fourier transforms of the rows is computed, then a second series of Fourier 

transforms of the columns is performed on the resulting m atrix. Computation 

of an IV x A  -point 2-D Fourier transform  requires 2N  complete, 1-D FFT 

calculations. The cost o f such a com putation would be 2N (N lo g (N ))  plus
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the communication overhead. Communication during the d istributed compu

ta tion  requires four transfers of the N  x N  m atrix.

Consider the computation of 2-dimensional FFT on a N  x N  data matrix 

computed by p processors. A  balanced workload is achieved by allocating 

each processor a sub-problem of computing the ( f  x N )  subm atrix of the 

problem. These operations may be carried out in  parallel by p processors. 

The best solution of the com putation is achieved in  Q (2iY(JVK JV))), plus the 

communication costs.

A  popular FFT program suite [90] has been adapted and modified to  com

pute the two dimensional FFT on the cluster computer and to evaluate the 

cluster’s performance.

Electric Field Approximator

Numerous problems tha t arise in  engineering can be visualized as a 2-dimensional 

grid  where the values of the ind ividual elements vary over tim e in  response 

to the values of neighbouring elements. Examples of such problems include 

electric fie ld intensity, therm al conduction, oceanographic sim ulation, and 

atmospheric modeling. P artia l D ifferentia l Equations (PDE’s), having well 

known solution techniques, can be expressed in  a data parallel fashion using 

arrays to  store a discretized representation of the problem [34], G rid or mesh 

techniques are frequently used to approximate the states of continuous enti

ties th a t behave in  a wave-like or flu id  fashion. Problems where each po in t in  

the grid has the same computational requirement are quite often called uni

form. P artia l D ifferential Equations are commonly used to  solve uniform  grid 

problems. Laplace’s equation governs steady-state d istribu tion  of electrical
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potentia l on a plane [116]:

o d2u d 2u n . .
+  ^  =  0 (2-1)

The derivatives can be replaced by the fin ite  difference approximation:

f " ( x )  «  +  h) ~  2f ( x )  +  f ( x  -  h)j (2.2)

W hich yields the formula:

V 2 ~  2̂ [u (x  +  +  w(x -  y) +  M(®, y + h ) +  u(x, y — h) ~  4u(x, y )] (2.3)

Setting V 2 =  0 and h — 1 (grid  granularity) produces an algorithm  th a t can 

be used to calculate any value on the grid whose dimensions are [x + 1] x [y + 1]:

u(x, y) «  i[u ( x  +  1 ,y) +  u(x  -  1, y) +  u{x, y +  1) +  u(x, y -  1)] (2.4)

A  sequential mesh calculation algorithm  m ight be implemented in the fol

lowing way:
For y — 1 To m

For x =  1 To 1

A X,y —  i - ^ - X + l , y  +  t y  -j- A x,y+1 T  A X j y — l ) / 4

Next x

Next y

Depending on the size of the grid the above calculation might have to be re

peated several times in  order to  achieve accurate results. The number of 

iterations required w ill vary from  one grid problem to another.

Such code is frequently implemented on SISD machines, since the values of a ll
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data points depend on the values of a ll elements of the grid. The com putation 

of N  x N  grid points requires N 2 floating point divisions and 3N 2 floating 

point additions, and the execution times become very long when N  is suffi

ciently large. The com putational complexity of the algorithm  0 ( n 2) makes i t  

an attractive problem to be implemented in  a d istributed environment. 

D istributed im plem entation of th is algorithm  requires partition ing  of the grid 

and assigning the partitions to every computer partic ipating in  the compu

tation. This pa rtition ing  and assignment of the data is usually done by one 

machine, which is aware of a ll the machines partic ipating in  the computa

tions. Since the computed data reside on machines physically d istinct from  

each other, additional communications are also required in  order to ensure 

correct grid values at the pa rtitio n  boundaries. The communications can ei

ther take place among the participating machines or they can be performed 

between the participants and the machine acting as a server. The later ap

proach was chosen, as it  is the server tha t assigns data to  the participants. 

The server is also aware of the boundaries resulting from  the partition ing  of 

data. Communications can be performed either in  a synchronous or an asyn

chronous manner. Since a ll participants had the same CPU and the number 

of data points required to  compute, the grid values, at the boundaries is only 

4N  per participant, the synchronous type of communication was chosen and 

implemented.

Consider the calculations of the grid values of an n x n m atrix  performed by 

p processors. A  balanced workload is achieved by allocating each processor 

a sub-problem of computing the x n) subm atrix of the problem. These 

operations may be carried out in  parallel by p processors. The best solution 

of the calculations of the grid values of n x n  m atrix on p <  n  processors is 

achieved in  0 ( ~ ) ,  provided tha t communication tim e is much smaller than
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com putation time.

A  d istribu ted version of the mesh algorithm  listed above was implemented and 

used to evaluate the cluster’s performance.

2.6 M odeling

The physical principles underlying the behaviour of most electronic devices 

are fa irly  complex, although the actual electrical behaviour of the device may 

be quite straightforward. Rather than attem pt to relate physical effects of the 

device d irectly to  network analysis, an intermediate step can be undertaken. 

This step is generally represented by the behaviour o f the device by voltage- 

current or other appropriate components such as resistors, voltage or current 

sources or other ideal elements. In  the la tte r case, the device is easily analyzed 

in  terms of c ircu it theory.

For classical analysis the standard approach has tra d ition a lly  been to  apply an 

equivalent c ircu it to  linear (small-signal) problems. E ither a graphical analysis 

or piecewise linear analysis is applied to  the solution of large signal circuits. 

Large-signal or nonlinear networks are often too d ifficu lt to  analyze, and it  

is not uncommon to  resort to several sim plifying assumptions to  obtain an 

approximate solution. Frequently, problems m ight require a large volume of 

calculations if  a high degree of accuracy is to be maintained. Thus w ith  manual 

analysis it  is almost always necessary to sim plify the device model to reduce 

the com plexity of the overall circuit/system  [31, p 221].

An attem pt was made to produce several models tha t characterize/ resemble 

the behaviour o f the designed system. Modeling in  th is sense is the process 

th a t represents the electrical properties of a device or interconnected device by 

means of mathematical equations, c ircu it representation or tables. Complex
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devices and large scale systems are characterized by macromodels tha t re

flect th e ir behaviour. Modeling at both levels, device and term inal, is equally 

im portant. Device level models are used for accurate analysis and design 

of smaller networks. Eventually, i f  these networks represent typ ica l building 

blocks in  larger systems, macromodeling is used to sim plify the representa

tion  and speed up the analysis. Frequently, device inform ation/behaviour w ill 

be obtained through a series o f experiments and then the designer is faced 

w ith  the task of implementing and constructing a model of the system from  

measured data. Physical device models usually involve a number of mathemat

ical equations. Typical tim ing studies have shown tha t the m ajor problem in 

analysis is in  evaluating these complicated relationships. Further, most analy

sis methods also require derivatives of the model equations-a cumbersome and 

error-prone task for the designer. For these reasons, increasing use is being 

made o f approximations of the model equations [136, p. 308].

2.6 .1  L inear M od el

Since resistors, capacitors, inductors, switches and ideal sources can be ana

lyzed in  an orderly manner, frequently an attem pt is made to relate devices 

such as active circuits to these elements. The basic elements have known 

voltage-current characteristics tha t can be characterized by constant, tim e- 

invariant parameters. Many im portant applications require the device to  op

erate over only a small area of the possible operating region w ith in  which the 

characteristics w ill be approximately linear. A  disadvantage of th is method 

is tha t once the device is modeled by constant-parameter elements, the area 

over which linear operation takes place is not apparent. Thus a given input
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signal, applied to the actual c ircu it, may be large enough to  cause a highly 

distorted output, while the c ircu it model w ill predict a non distorted output. 

Some attention is then required in  prescribing the limits over which a given 

model is valid, especially when autom atic analysis programs are utilized [31, 

p 223].

2.6 .2  N on lin ear M od el

Simple circuits can be used to  model complicated systems only when the sys

tem ’s operating region is small. Frequently the nonlinearities inherent in  the 

device characteristics begin to  d isto rt the response of the actual system. In  

order to describe the system’s nonlinearities one must resort to  sophisticated 

modeling techniques. One method for analyzing nonlinear circuits is that of 

piecewise linear approximation. The nonlinear characteristics are averaged 

over the swing of interest and represented approximately by linear character

istics. A  linear c ircu it model yielding the lin earized characteristics can then 

be proposed. For devices passing from  one operating region to another, a 

different, linearized equivalent c ircu it can be proposed for each region [31, p 

229],

2 .6 .3  D iscrete  System s

Discrete systems are d ifficu lt to  model in  a linear fashion. Frequently a trans

form ation of the discrete system needs to  take place before continuous mod

eling techniques can be used. In  order to  perform continuous modeling of the 

response of a system, one needs to  analyze it  as a system th a t changes in  tim e. 

Example of such transform ation can be a transform ation o f a com putational
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task involving a series of computations whose length or com plexity increases 

when the calculations of the last computation are complete. The to ta l tim e 

required to  perform  the computations is the sum of the com putation times 

of the varied sized problems. The system response is recorded at the end of 

each iteration and the data is plotted. The intervals at which the response is 

recorded increase w ith  the increase of the data on which the system computes. 

Frequently only selected regions o f the system response can be modeled w ith  

a satisfactory level of accuracy using one modeling technique. Often m ultip le  

models need to  be devised to accurately model the entire response of a com

plex system.

Modeling the performance of distributed systems requires identification of c rit

ical phenomena affecting the response of the system. In  d istribu ted environ

ments, the performance of the I/O  and floating point components plays an 

im portant role. In  th is thesis we w ill attem pt to identify and study the per

formance of the above identified, c ritica l cluster components. Later we w ill 

attem pt to develop a discrete and a continuous model of the designed system.
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Chapter 3 

Apparatus

The previous chapters specify tha t one of the objectives of the experiment 

was to  develop a machine tha t would have a high performance to  price ratio. 

In  order to accomplish the task the cluster needed to be implemented using 

commodity commercially available parts. The follow ing hardware components 

were identified as the absolute minimum:

•  C luster Server

•  Several C luster Members

•  Network Connections

Adaptation o f standard software, operating system and networking software 

was also identified as one of the factors tha t influenced the development of the 

cluster. L inux operating system was chosen as the development platform . A ll 

popular Linux d istributions come w ith  development tools such as compilers, 

debuggers and related literature. For details and history of L inux please refer

47
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to  the appendix. The networking details of the implemented cluster w ill be 

addressed in  the next chapter.

3.1 Server

The server computer was the only computer assembled from new parts. W hile 

it  was not crucial to  bu ild  a fast machine to coordinate cluster activities, it  

had to  meet several requirements. The follow ing services had to  be provided 

by the server:

•  Development platform  (a ll code was compiled on the server)

•  Network management:

1. NFS server

2. TFTP  server

3. BOOTP server

4. DHCP server

5. Telnet server

•  Cluster coordination

•  Experiment data collection and management

Several observations should be made at th is point. F irstly, we realize th a t the 

server m ight potentia lly be required to  perform several tasks simultaneously. 

A  multiprocessor architecture, while not required, would help ensure the accu

racy o f the experiment results being recorded. Secondly, we observe th a t the 

server w ill be providing file services for several cluster members as well as for
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itself. A  dedicated disk should be allocated to each task i f  possible. Lastly, 

we note tha t the server w ill be providing a variety of network services to  the 

cluster members partic ipating in  the experiment. A fast Ethernet network 

card, possibly m ultip le cards, should be installed in  the server.

3.1 .1  Server H ardw are

The server was assembled using commercially available parts which were pur

chased at a local computer store. The follow ing is a lis t of components used 

to  assemble the server:

•  Dual Processor Pentium 11/Pentium I I I  Motherboard

•  Two In te l Pentium I I I  processors

•  128MB of SDRAM memory

•  Two U ltra  2 SCSI hard discs

•  AGP Video Card

•  Fast Ethernet Network Card

•  Tower Case

3 .1 .2  Server Softw are

The RedHat d istribu tion  of L inux was the operating system o f choice. The 

RedHat flavour of L inux comes w ith  several development tools. This d is tri

bution also has a ll networking software tha t was needed to set up a network

management system required for the experiment.
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make c o n fig
make dep
make clean
make bzlmage
make l i l o
make modules
make m o d u le s_ ln s ta ll

Figure 3.1: SMP support kernel com pilation 

Kernel Configuration

Most L inux d istributions do not provide a kernel tha t is multiprocessor aware. 

In  order to enable the SMP support one needs to compile a custom kernel and 

enable several configuration options. The follow ing options need to  be selected 

while compiling [94]:

•  Processor Type and Features:

M TRR (Memory Type Range Register) support: ENABLED 

Symmetric multi-processing support: ENABLED

•  General Setup:

Advanced Power Management BIOS support: D ISABLED 

RTC (Real Time Clock) support: ENABLED

Like most U N IX  kernels, L inux kernel, is m onolithic but i t  is possible to use 

kernel modules for device drivers. I t  is necessary to recompile a ll modules to 

enable the SMP support. Figure 3.1 lists the commands th a t need to  be issued 

to  compile and activate the SMP support on RedHat L inux operating system.
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p rocesso r 0 p rocesso r 1
vendor_ id G e n u in e ln te l vendor_ id G e n u in e ln te l
cpu fa m ily 6 cpu fa m ily 6
model 7 model 7
model name Pentium  I I I  (Katm ai) model name Pentium  I I I
s te p p in g 3 s te p p in g 3
cpu MHz 451.026194 cpu MHz 451.026194
cache s iz e 512 KB cache s iz e 512 KB

bogomips 450.56 bogomips 448.92

(a) Processor 1 (b) Processor 2

Figure 3.2: L isting o f /e tc /p roc file

The multiprocessor kernel operation can be determined in  two ways. F irstly, 

one can examine kernel messages at the boot when the kernel tries to  detect a ll 

processors and activate them. Secondly, the inform ation about the system’s 

CPUs can be found by examining the contents of the /p roc/cpu in fo  v irtu a l 

file. The inform ation obtained from  the /proc/cpu in fo  file  is shown in  figure 

3.2.

D eve lopm en t S o ftw are

RedHat 6.1 L inux comes bundled w ith  program development software (com

pilers and libraries) as well as the documentation useful for programmers and 

system developers. A  lis t of packages installed on the server can be found in 

the appendix.
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3.2 Cluster Member

In  order to  b u ilt an inexpensive cluster one could use computers tha t have 

been previously deployed and are reaching the end of the ir productive life 

cycle. Such machines are often found in computer laboratories or libraries. 

Several Pentium  class computers were obtained and modified to  participate in  

the experiments.

3.2 .1  H ardw are C onfiguration

The hardware requirements for a cluster participant were very modest. I t  was 

determined th a t a computer consisting o f the parts listed below would fu lly  

suffice:

•  CPU: Pentium class

•  Memory: 16MB or more

•  Floppy Drive: 3.5” , 1.44MB

•  NIC: Ethernet 10M Bit or 100MBit

•  Hard Drive: optional

•  Video: optional

•  Keyboard: optional

A ll cluster member computers came w ith  local hard disks, video cards and 

keyboards bu t these items were not d irectly utilized. None of the computers 

contained a local copy of the operating system and the computers booting 

were not booting of the local hard drive. A ll machines were booting of the 

server via  network. However, the hard drive was utilized. In  order to  m inim ize
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network tra ffic  and avoid system swapping via network, the swap pa rtition  of 

each cluster member was mounted on its  local hard drive. The remaining pe

ripherals (video cards and keyboards) were not used after the in itia l setup was 

performed. Most modern computers can be “to ld ” to operate w ithout a video 

card or a keyboard by m odifying settings in  the computer’s BIOS.

3.2 .2  Softw are C onfiguration

As stated in  the previous section, each cluster member was booting of the 

cluster server via the network. In  order to  accomplish th is task two issues 

need to be addressed. F irstly, the booting computer has to  be to ld , and be 

able, to use the network card as its  booting device. Secondly, a customized 

version of the operating system needs to be available to the booting computer 

at the tim e of the boot.

Network Boot

The firs t task can be accomplished via the means of a BOO T ROM in  the 

network card of a cluster member. The second approach is to  provide the 

computer w ith  an image of the operating system on a floppy disk. Each ap

proach has its  benefits, but it  also has some drawbacks.

Creating BOOT ROMS requires th a t one obtain BOOT ROM images o f each 

network card used in  the cluster. Such images are often subject to  copyright 

agreements and are in  general d ifficu lt to  obtain. The second problem w ith  

such an approach is th a t one needs to  physically remove the ROM chip from  

the network interface card when one does not want to boot from  the network. 

On a developmement system one quite often needs to m odify the kernel image
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of a cluster member. Each such a m odification would require the creation of a 

new set of boot floppies; booting from  a floppy drive is also much slower than 

booting from  a hard drive or via  the network.

A  feasible compromise would be to  provide the BOOT ROM code to the com

puter on a floppy disk. Several free (Linux based) software packages provide 

BOO T ROM images tha t could be burned into an eeprom and then used for 

network booting. The etherboot package allows developers to  test BOOT 

ROM images p rio r to  EEPROM burning. The etherboot software package 

allows for the creation of boot floppy disc containing only the BOO T ROM 

code (8KB). This was a perfect compromise between a commercial BOOT 

ROM and a fu lly  blown OS image on a floppy. The BO O T ROM code is 

loaded in  less than a second and then the network boot takes place. Changes 

to  the cluster member’s kernel can be made in  one central location and they 

w ill be picked up by booting cluster members. I f  a computer partic ipa ting  in  

the experiment for some reason needs to be used for other tasks, it  can be used 

w ithout the need to  open the case and remove the BOOT ROM.

The boot process can be divided into the follow ing steps:

1. Power On System Test (POST),

2. Boot device identification,

3. Loading boot code,

4. Location of the Operating System files,

5. Loading of system files and mounting file  systems.

The boot is accomplished in  the following manner: firs t a boot floppy is located 

and the BOOT ROM code is loaded; next the booting computer broadcasts
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requests for an image of the OS files. When such a broadcast is detected by 

the cluster server, the server tells the client where it  can locate the image of 

the kernel. A fte r the kernel image is loaded, the control o f the boot processes 

is passed to the kernel. The kernel identifies the hardware configuration of the 

machine and recognizes the fact tha t it  needs to  finish the boot process using 

the network. Another broadcast request is sent inquiring about the location of 

the system files and remote file systems. A fte r th is inform ation is provided by 

the server, the cluster member finishes loading system files, mounts the swap 

p a rtitio n  on the local hard drive, remote file  systems on the server, and the 

boot is complete. Any files required by the computer after the boot are loaded 

from  file  systems mounted from  the server.

Kernel Configuration

A custom kernel needs to be b u ilt in  order to  support diskless configuration 

of a cluster member. The following options were specified during the kernel 

configuration procedure:

•  Filesystems:

Second extended fs support 

Network F ile Systems:

— NFS filesystem support: ENABLED

— Root file  system on NFS: ENABLED

® Network Device Support:

Ethernet (10 or 100Mbit):

— Cluster Member Network Card Type: C O M PILED -IN  (not as module)
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Diskless Client

As stated in  the previous section, none of the computers participating in  the 

experiment had a local copy of the operating system. The operating system 

was loaded via network and file  systems were mounted on the server. The 

lis ting  below shows a ll file systems mounted by a cluster member:

1. a s u s 2 p 3 :/tftp b o o t/c m 3  on /  typ e  n fs  

( rw ,rs iz e = 8 1 9 2 Jw s iz e = 8 1 9 2 ,tim e o = 1 4 ,in tr)

2. none on /p ro c  type  p roc  (rw )

3. none on /d e v /p ts  type  devp ts  ( rw , g id = 5 ,mode=620)

4 . asus2p3: / t f t p b o o t /u s r  on /u s r  typ e  n fs

( rw , rs ize= 8192 ,w s ize=8192 ,tim eo= 14 , i n t r , addr=192.19 3 .1 .2 5 0 )

5. asus2p3: /hom e/developm ent on /deve lopm ent typ e  n fs

( rw , rs iz e = 8 1 9 2 ,wsize=8192, t  imeo 1 4 ,i n t r , addr=192.1 9 3 .1 .2 5 0 )

The firs t entry shows tha t the root of computer CM3 is mounted on com

puter named asus2p3 (the server) in  the /tftp b o o t/cm 3  directory. The next 

two entries apply to  v irtu a l file systems tha t are not mounted physically. The 

fou rth  entry shows a common /usr file  system th a t is shared among a ll clus

te r participants. Finally, the fifth  entry shows tha t the working d irectory o f 

the currently logged user is mounted on asus2p3 in  the /home/ development 

directory.
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3.3 Network Connection

The most common type of networking technologies used today is Ethernet. 

Ethernet is also the least expensive networking hardware available today. 

W hile Ethernet technology does not scale and reaches its  peak efficiency at 

60% medium u tiliza tion , i t  works well on medium sized networks [128]. There 

are three types of Ethernet hardware available on the market today. The 

firs t and most common type is 10M Bit Ethernet. 10M Bit Ethernet hardware 

runs at 10MHz and delivers transfer rates around IM B/sec. The second type, 

so called “Fast Ethernet” runs at 100MHz and delivers transfer rates around 

lOMB/Sec. The newest type of Ethernet is “G igabit” Ethernet. G igabit E th

ernet runs at 1GHz and delivers transfer rates close to lOOMB/sec. G igabit 

hardware is s till very expensive and the distance between nodes cannot be very 

large [25, p 132].

The conducted research examined the applicab ility of Ethernet and fast E th

ernet technologies in  cluster topology.

3.3 .1  N IC s

Two types of Network Interface Cards (NICs) were used. In itia lly  each clus

ter member had a 10M Bit Ethernet card. Later on tests were conducted on 

100MBit Ethernet.

3.3 .2  H ubs

The 10M Bit topology was implemented using a 10M Bit hub. The 100MBit 

topology was implemented using a 100MBit. The use of a sw itch was consid

ered. An Ethernet switch allows for creation of v irtu a l connections between
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two machines exchanging inform ation and th a t conversation is isolated (fil

tered) from  the rest of the computers present on the network. The performance 

of such a network is greater than tha t o f a hub based network because there 

are fewer packet collisions. A  hub based implementation does not allow for 

creation of isolated v irtu a l circuits. Any broadcasting machine is “heard” by 

a ll computers connected; when more than two computers are exchanging infor

mation, packet collisions contribute to overall network performance [86]. The 

cluster’s network topology is illustra ted in  figure 3.4. We see th a t the server 

has only one network connection. A ll inform ation sent to  cluster members is 

carried through th a t connection. I t  would be impossible to  create m ultip le 

isolated circuits between the server and cluster members. Thus the cluster 

would not benefit greatly from  the use of a switch.

3 .3 .3  N etw ork  T opology

Ethernet based networks are implemented in  two fashions. The orig inal coax 

based Ethernet was implemented using bus topology. A ll partic ipating com

puters connected to  a common bus and broadcast inform ation on the bus. 

W hile s till common, the coax based Ethernet is being replaced by tw isted pair 

based Ethernet, which is implemented using star topology. In  star topology 

a ll network participants are connected to  a hub or a switch using Category 3 

or higher tw isted pair cables. One issue worth noting is the fact th a t the coax 

based Ethernet is lim ited to 10MHz, hence it  cannot be used w ith  100M Bit or 

faster network interface cards. The star topology was chosen to implement the 

cluster’s network infrastructure. The bus and star topologies are illustra ted  in  

figures 3.3 and 3.4 respectively.
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3.4 Scalability

I t  was im portant to design a cluster tha t could scale, or whose performance 

would increase w ith  the number of nodes present. W hile Ethernet networks 

benefit from  switched technologies, the only communications th a t take place in 

the cluster are the communications between the server and each cluster mem

ber. In  order to create N  isolated circuits the server would need N  network 

cards. The current PC architecture imposes a lim it on how many expansion 

slots can be present in  a PC. Usually a PC w ill have four expansion slots on 

one bus. Some high end servers have two buses, but tha t would s till pu t a 

l im it, on the number of network cards present in  a system.

In  order to avoid th a t physical lim ita tion , it  was decided to use one network 

card in  the server and to observe its  scalability.
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Cluster Network  

Im plem entation

The previous chapter illustra ted the topology of the implemented cluster. The 

follow ing chapter w ill provide the reader w ith  additional im plem entation de

tails.

4.1 Network Connectivity

The main idea behind the implemented cluster is to  u tilize  the ind ividual 

computing facilities of machines th a t can be accessed remotely via  network. 

The network is the only connection tha t exists between the cluster members 

and the server.

4.1.1 Client-Server Computing

As stated previously, the computers partic ipating in  the cluster are not aware 

o f each other. They are not even aware of the cluster server. As far as the

61
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cluster member is concerned it  only provides computing facilities to  anybody 

tha t requests them. In  the implemented cluster, cluster members are actually 

computing servers th a t can perform some computations on the data sent to 

them. The results of the computations are sent back to  the computer the

computing. Some clarification is needed at th is point. C luster member com

puters are computing servers. The cluster server is a clever client th a t divides 

its  computing problem evenly among computing servers. The clever client is 

capable of d ivid ing and coordinating the activities o f the servers. As far as 

the client is concerned, it  can send its  data to one or more servers and collect 

the results. The computing servers do not care where the data comes from. 

As long as the client(s) follow a protocol of the server, the server w ill receive 

the data and perform computations on them. The follow ing is the protocol 

designed for cluster m atrix  m ultip lication:

Cluster Member Cluster Server

data originated from  (client). This model of computing is called C lient-Server

(Server)

W ait for connection

(Client)

Send M a trix  Dimensions

Receive M a trix  Dimensions W ait for Confirm ation of M a trix  Dimensions

W ait for M a trix  1 Send M a trix  1

Receive M a trix  1 W ait for Confirm ation

W ait for M a trix  2 Send M a trix  2

W ait for Confirm ation

W ait for Results

Send Results Receive Results

Sim ilar protocol was designed for cluster F F T :
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Cluster Member Cluster Server

(Server) (Client)

W ait for connection Send Matrix Dimensions

Receive M a trix  Dimensions W ait for Confirm ation of M a trix  Dimensions

W ait for M a trix  Send M a trix

Receive M a trix  1

W ait for Results 

Send Results Receive Results

The client-server architecture is very common. Quite often servers are power

fu l computers perform ing computations on behalf of less powerful clients. I t  is 

common to  see servers serving m ultip le clients simultaneously. In  our case we 

have several com puting servers utilized simultaneously by one client. Figures 

4.1 and 4.2 illus tra te  both concepts clearly.

4 .1 .2  OS S upport

One of the desired features of cluster computing is the fact th a t it  can be 

performed on machines tha t are completely independent. C luster members do 

not have to have the same hardware architecture or run the same operating 

system. There are a few requirements tha t need to be satisfied.

Network Support

Each machine participating in  the cluster needs to be able to  communicate 

w ith  the cluster server. The operating system needs to  provide a means for 

conducting communications. I t  was decided tha t the commonly used T C P /IP  

protocol should be used as the lingua franca of the cluster. Any computer run-
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□

□
□

Server \  ^

/ < /  V
\

LB
Client Client

Figure 4.1: Typical C lient-Server

ning an operating system tha t provides support for T C P /IP  communications 

can be used to participate in  the cluster.

Binary Compatibility

ANSI C programming language was used to  develop the code and socket com

munications were used to pass messages between the cluster participants. GNU 

C compiler was used to  compile the code for cluster members and the server. 

GNU C compiler has been ported to  many operating systems. The cluster 

member code should run w ithout m odifications on any p latform  to  which the 

GNU C compiler has been ported.
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□ □
■  **IV ,[ p ^ r n s

Server \

\ / Server

□
Client \  \  

/  \ >  \
< # #

\

Server Server

Figure 4.2: Implemented Cluster Client-Server

4.2 Network Services

The previous chapter addressed the network configurations th a t needed to be 

performed on the client side. The follow ing sections w ill address the implemen

ta tion  details on the server side. The server needs to provide several services 

for cluster participants. W hile it  is not absolutely necessary th a t a ll o f these 

services be implemented, the services listed below allowed seamless client ad

d ition  and automated the cluster adm inistration. The follow ing services were 

configured:
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•  DHCP and BOOTP: IP  management

•  TFTP : Network Boot

•  NFS: Network File System

The server provides three basic services for the clients. F irs tly  and most 

im portantly, i t  gives them an identity. Secondly, it  te lls them where to  load 

the image of the operating system from  and finally, i t  provides them w ith  a 

working file system. Each of the services is explained in  the sections below.

4.2 .1  D H C P  and B O O T P

The software used to  perform  network IP  management was Internet Software 

Consortium DHCP Server, dhcpd. The software implements Dynamic Host 

Configuration Protocol (DHCP) and Internet Bootstrap Protocol (BOOTP). 

The DHCP protocol allows a host unknown to  the network adm inistrator to 

be autom atically assigned a new IP  address out of a pool of IP  addresses for its  

network. In  order for th is to  work, the network adm inistrator allocates address 

pools in  each subnet and enters them into the dhcpd.conf file. On startup, 

dhcpd reads the dhcpd.conf file  and stores a lis t of available addresses on each 

subnet in  memory. When a client requests an address using the DHCP pro

tocol, dhcpd allocates an address for it. Each client is assigned a lease, which 

expires after an amount of tim e chosen by the adm inistrator. Before leases 

expire, the clients to which leases are assigned are expected to renew them in  

order to continue to  use the addresses. Once a lease has expired, the client 

to  which th a t lease was assigned is no longer perm itted to  use the leased IP  

address [138].

The dhcpd software needs to  be configured before i t  can serve clients. The
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configuration settings for dhcpd are stored in  the /e tc/dhcpd.conf file: 
subnet 19 2 .1 9 3 .1 .0  netmask 255 .255 .255 .0  {

range 192 .193 .1 .80  192 .193 .1 .90 ;

d e fa u lt - le a s e - t im e  36000;

max-lease-time 72000;

}
group{
filename " / t f tp b o o t /e e p r o k e m e l" ;

server-nam e "asus2 p3";

n e x t-s e rv e r  192 .193 .1 .250 ;

o p t io n  dom ain-nam e-servers 129 .100 .2 .12 ;

o p t io n  domain-name "uwo.ca";
h o s t cml {

hardware e th e rn e t 0 0 :DO:B7:BD:4 9 :8A; 

f ix e d -a d d re s s  192 .19 3 .1 .7 1 ; 

o p t io n  host-nam e "c m l" ;

}

h o s t cm6 {

hardware e th e rn e t 0 0 :DO:B7:BD:9 0 :4D; 

f ix e d -a d d re s s  192 .1 9 3 .1.76; 
o p t io n  host-nam e "cm 6";

}
}

The firs t part of the configuration file contains a range of IP  addresses th a t it  

can give out to any client tha t requests them. In  tha t section one also specifies 

the lease tim e o f the IP  addresses given out. Before the lease expires the client
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w ill need to renew the IP  address it  leases or obtain a new one.

The second section specifies global data for a set of hosts. In  our case these 

data belong to cluster members partic ipating in  the experiment (C M 1-C M 6). 

The firs t line tells clients where to find an image of the kernel file  to be loaded. 

The second line tells clients the name of the server. The remaining options in 

the global section te ll clients additional inform ation they m ight need.

The th ird  section contains inform ation organized in groups for each and every 

host partic ipating in  the cluster. Each host has a network card w ith  a unique 

hardware address assigned to i t  by the card’s manufacturer. The firs t line in  

every group identifies the hardware address o f the cluster participant. The 

IP  address of the participant is found on the second line. F inally, its  name is 

listed on the th ird  line.

Consider a computer attem pting to  boot using network facilities. The com

puter loads the boot code from  its  BOOT ROM and then it  attempts to  find 

a server th a t contains an image of the OS the client needs to  load. The client 

broadcasts requests to DHCP servers present on the network. I f  a DHCP 

server is present on the network, i t  w ill answer and offer the client an IP  ad

dress together w ith  the inform ation specifying the location of the kernel image. 

I f  the client accepts the offered IP, it  sends an acknowledgment to the server 

confirm ing the acceptance of the lease.

Demonstration of conversation between the server and the client (CM4):
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[root/@ asus2p3 / r o o t ] #  dhcpd -d

In te rn e t  S o ftw are  Consortium  DHCP S erver 2 .0

C o p y rig h t 1995, 1996, 1997, 1998, 1999 The In te rn e t  S o ftw are

C onsortium .

A l l  r ig h t s  re se rve d .

P lease c o n tr ib u te  i f  you f in d  t h is  so ftw a re  u s e fu l .

For in fo ,  p lease  v i s i t  h t t p : //w w w . i s c . o rg /d h c p -c o n tr ib .h tm l

L is te n in g  on L P F /e th 0 /0 0 :9 0 :2 7 :7 7 :4 1 :8 a /1 9 2 .193 .1 .0

Sending on L P F /e th 0 /0 0 :9 0 :2 7 :7 7 :4 1 :8 a /1 9 2 .1 9 3 .1 .0

Sending on S o c k e t / fa l lb a c k / fa l lb a c k -n e t

DHCPDISCOVER from  0 0 :d 0 :b 7 :b d :9 0 :4 d  v ia  ethO

DHCPOFFER on 192 .193 .1 .74  to  0 0 :d 0 :b 7 :b d :9 0 :4 d  v ia  ethO

DHCPREQUEST f o r  192 .193 .1 .74  from  0 0 :d 0 :b 7 :b d :9 0 :4 d  v ia  ethO

DHCPACK on 192 .193 .1 .74  to  0 0 :d 0 :b 7 :b d :9 0 :4 d  v ia  ethO

4 .2 .2  T F T P

When the client receives a valid IP  address together with the inform ation 

where to fin d the kernel image, it  needs to load and execute it. The protocol 

used to  load the kernel is TFTP  or T riv ia l File Transfer Protocol. TFTP  is 

a ligh t version of the F ile  Transfer Protocol or FTP. TFTP  is not a secure 

protocol and it  does not provide authentication. TFTP  runs on top o f User 

Datagram Protocol (UDP) instead of Transmission Control P rotocol (TC P). 

UDP was chosen instead of TCP for sim plicity. The implem entation of UDP is 

much simpler than th a t o f TCP and the code can fit easily on a BO O T ROM. 

Because UDP is a block oriented, as opposed to a stream oriented, protocol,
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the transfer is performed block by block. A  typical conversation between a 

cluster member and the server is illustra ted in  the dialogue below:

CM: G ive me b lo c k  1 o f / t f tp b o o t /e e p ro k e rn e l 

CS: B lock  1 o f / 1 f tp b o o t / eeprokerne1 

CM: G ive me b lo c k  2

The conversation is carried on u n til the entire image of the kernel is transferred. 

Handshaking is a simple acknowledgment o f each block scheme, and packet loss 

is handled by retransm it on tim eout. When a ll blocks have been received, the 

network boot ROM hands control to the operating system image at the entry 

point [39].

4 .2 .3  N F S

When the OS kernel boots i t  needs to mount a root file  system. The cluster 

was implemented in  such a way tha t each cluster member mounted a root file 

system from  the server. Thus it  always had updated binaries and a ll cluster 

member files were up to date. The protocol used to provide root file  systems 

for cluster members was Network F ile System or NFS. A fte r the kernel is 

loaded and the root over NFS option is compiled into the kernel (see section 

3.2.2) the booting computer can mount a file  system residing on the server. 

The server hosts a separate OS image for each cluster member. The server 

also allows each cluster member to mount a common directory, which is used 

to host binaries of programs run by cluster members. The lis t below contains 

a ll server directories th a t can be accessed using NFS [74].
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[damian@asu.s2p3 damian] $ ca t /e tc /e x p o r ts  

/home/development * .uwo. ca (rw )

/ t f tp b o o t /c m l * . uwo. ca(rw ,no_root_squash)

/tftpboot/cm2 *  .uwo. ca(rw  ,no_root_squash)

/tf tpboot/cm3 * .uwo. ca(rw ,no_root_squash)

/ t f tp b o o t /c m 4  *  .uwo. c a (rw ,no_root_squash)

/ t f tp b o o t /c m 5  *  .uwo. ca(rw ,no_root_squash)

/ t f tp b o o t/c m 6  *  .uwo. ca (rw, no _root .squash)

/ t f t p b o o t/usr * . uwo. c a (ro ,n o _ ro o t .squash)

The firs t entry specifies a common directory th a t is accessible freely by any

body. The next four entries are unique to each cluster member participating in  

the experiment. They contain root file systems of a particu lar computer (C M 1- 

CM6). F inally, the last entry lists a common /usr folder th a t is mounted as 

“read only” . The /u sr folder on a Linux system contains system files tha t do 

not need to be modified by users.
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Chapter 5 

Cluster Applications

Let us consider the following problem. Suppose we want to evaluate the value 

of ex using the following formula:

rp rp rp rp
™ . *L> tXj «£/ tJU /  _  . \

e = 1 + l !  +  a  +  3! ' "  +  d  (s 1

Given the values of x (power) and n (desired accuracy) we could evaluate the 

value o f ex using the algorithm  hsted in  figure 5.1. We can easily see th a t the

E=1
For i = l  To n 

E=E+ x / i !
Next i

Figure 5.1: Exponent evaluation serial algorithm

value of ex is the sum of independently calculated discrete fractions of x  and 

d. We could easily d istribute the task among remote computers and collect 

the ir ind ividual results to produce the value of ex. Figure 5.2 demonstrates 

how we can rewrite the serial algorithm  in  such a way tha t it  could be used 

to calculate any part of the series. This program could run on any computer

72
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E=0
For i=Min To Max 
E=E+x/i!

Next i
Figure 5.2: Parallel exponent evaluation client

partic ipating in  the computations. We would then need some coordinating 

computer tha t would schedule those computation on remote computers. A 

program run by the coordinator is listed in  figure 5.3. The computing task

E=1
For i = l  To NumberO fC lients

E [ i]= C a lc u la te E (M in ( i) , Max(i))
Next i
For i = l  To NumberO fC lients 

E=E+E[i]
Next i

Figure 5.3: Parallel exponent evaluation server

would be performed in  parallel by a ll (N) computers partic ipating in  the com

putations. The overall computing tim e would be reduced and, depending on 

the nature of the problem, a potential speed-up of N  could be achieved.

In  order to evaluate the functionality and applicability three engineering ap

plications were developed and run on the cluster. Implementation details w ill 

follow  in  the sections below.

5.1 M atrix  M ultip lication

M atrix  m ultip lication algorithm  is a CPU intensive task, hence a good can

didate for performance evaluation of shared and distributed memory parallel 

computers [51].

In  section 2.5.2 the product of two matrices was defined as [C] =  [A][B] and
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the elements o f [C] were defined as:

n

C i,i — 'Y2  A i,kB k ,j

fc=1

where n  is the column dimension of [A] and the row dimension of [B]. That is, 

the Cij element is obtained by adding the product of ind ividual elements from 

the i th row o f the firs t m atrix  [A] by the j th column from  the second m atrix 

[.B ] [24, pp 206-207 ]. The above defin ition states th a t the m ultip lica tion  of 

two matrices can only be performed if  the firs t m atrix  has as many columns 

as the number o f rows in  the second m atrix. Thus, i f  [A] is an m  x n m atrix 

[B] could be an n x I m atrix. The resulting [C] m atrix would have dimension 

of m  x I.

5.1.1  S eq uentia l A lgorith m

A  sequential m atrix  m ultip lica tion  algorithm  was presented in  section 2.5.2. 

We reproduce it  here for reference. The algorithm  uses three nested loops tha t 

traverse each row o f m a trix  [A] and each column of m atrix  [B ]. The algorithm  

is illustra ted in  the pseudocode listed in  figure 5.4.

For i = l  To m 
For j = l  To 1 

For k = l To n
C [ i ]  [ j ] = C [ i ]  [ j ]  + A [ i ]  [k ] x B [k ] [ j ]

Next k 
Next j  

Next i

Figure 5.4: Sequential m atrix m ultip lica tion algorithm
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5.1 .2  P ara lle l A lgorith m

The sequential algorithm  described above performs m  x I x n  independent 

m ultip lica tions. The order in  which each set of m ultip lications takes place 

does not affect the fina l result. The result could be obtained by perform ing 

the m ultip lications in  parallel by one or more independent processors. Each of 

the processors would only need to  have access to  the particu lar row of m atrix 

[A] and to the corresponding column of m atrix  [B] as well the location where 

the result should be stored. Obviously, th is is not an optim al way to  perform 

a m atrix-m atrix  product in  parallel; however, it  results in  a good illustra tion  

of the concept. The data are replicated to a ll partic ipating processors, as it  

is quite often the case in  many parallel calculations th a t some data items are 

needed in  a ll processors. Replication of th is data is more efficient than inter 

processor communications [71].

Consider two 2 x 2  matrices:

"  A n A 12
B  =

B n B \2

A 21 A 22 B 21 B 22

The result o f [A] x [B } could be obtained by perform ing computations on two 

independent processors:

P rocessor 1 P rocessor 2
□

B n  B 12
□ □

B n  B 12
A n  A n II O £ to A 21 A 22

B 21 B 22 - B 21 B 22

The results of the independent computations can be then combined into one
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resulting m atrix:

Cu C 12

C21 C22

This characteristic can be utilized to implement a cluster matrix multiplication 

algorithm .

5 .1 .3  C lu ster  Im p lem en tation

Consider the follow ing cluster infrastructure. There exist N independent com

puting entities ( Cluster Members or CM) capable of perform ing m atrix  mul

tip lica tions on a rb itra rily  sized matrices [A] and [B].

There exists a supervising computing en tity  (Cluster Server or CS) which is 

coordinating any computing activities in  the cluster. The CS is aware of each 

and every CM available for computations. The CS divides the com putational 

task evenly among a ll CM ’s. This means tha t data are partitioned and sent 

to a ll C M ’s.

Each CM is w aiting for data to  compute on; when it  receives the data (two 

matrices), i t  performs the m ultip lica tion o f the two matrices. The results o f 

the com putation are sent to the computer where the data originated from  

(CS).

The CS receives a ll results and combines them into one logical en tity  th a t 

could be stored for later analysis.
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C luster Server Pseudo Code:

Read Matrix [A]njTl 

Read M a trix  [B)n n̂ 

For i  =  1 To N

Connect to C luster Member i  

Send [Ajyjy'jv̂

Send

Disconnect from  Cluster Member i

Next i

For i  — 1 To N

Connect to  C luster Member i

Receive [C \n/ N,n

Disconnect from Cluster Member i

Next i  

Store [C]n,n

Cluster Member Pseudo Code:

Do

Listen for Connection from  Cluster Server

Connect to  C luster Server

Read M a trix  [A]mjn

Read M a trix  [B)ntn

M u ltip ly  [A ]m>n[R ]ra,n

Connect to  Cluster Server

Send Result [C]m,n

Disconnect from  Cluster Server 

End Do
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To demonstrate the above algorithms we w ill perform  a m u ltip lica tion  of 

two 4 x 4  matrices on a cluster w ith  four CM ’s. Consider two matrices:

T ill A 1 2 ^ 13 A u ’ f in B \2 B 1 3 B n

A 2 1 A 2 2 A 2 3 A 2 4
B  -

B 2i B 22 B 23 B 24

M31 A 3 2 A 33 A 34 B 3 1 B 3 2 B 3 3 B 3 4

A 4 1 A 4 2 A43 A 44 B 4 1 B 4 2 B 4 3 B 4 4

The CS needs to  p a rtition  the data and send it  to  the partic ipating CMs. Each 

CM w ill receive one row of [A] and the entire m atrix  [B ] :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

C h a p t e r  5. C l u s t e r  A p p l ic a t io n s

CM 1:

CM 2:

CM 3:

CM 4:

A1 =  Au U2 A l3 114 B =

Bu B \2 Biz B u

B 21 B 22 B 23 B 24

B 31 B 32 Bzz B u

B 41 B 42 B 43 B 44

A 2 =  A 21 2̂2 A 23 124 ,B  =

B n B 1 2 B \3 B u

B 2 1 B 2 2 B 2 3 B 2 1

B 3 1 B 3 2 B 3 3 B 3 4

B 4 1 B 4 2 B 4 3 B 4 4

A3 A :31 ^ 3 2  ^133 ^ 3 4

B n B \2 B\3 B u

B 21 B 22 B 23 B 24

B 31 B 32 B 33 B 34

B 41 B 42 B 43 B 44

A4 — A 41 A 42 A 43 A 44 ,B  =

B n B \ 2 B 13 B u

B 2 1 B 2 2 B 2 3 B 2 4

B 3 1 B 3 2 B 3 3 B 3 4

B 4 1 B 4 2 B 4 3 B 4 4
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Each CM w ill then m ultiply the matrices it  has received and then send the 

results to the CS:

CM 1:

□
C l  =  C l 1 C i2 C i3  C u

CM 2:

□
C 2 — C21 C22 C23 C24

CM 3:

□
C3 — C31 C32 C33 C34

CM 4:

(74 — C41 C42 C43 C44

The CS w ill assemble the ind ividual results into one matrix:

(  C l
□

\ r

C2
□

(73
□

I C 4 . / -

C u C 12 c 13 C u

C 21 C 22 C 23 C 24

C 31 C 32 C 33 C 34

C 41 C 42 C 43 C 44
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5 .1 .4  C onclu d in g  R em arks

The algorithm  has been implemented in  the C programming language (see 

the listings in  the Appendix). The correctness o f its operation was tested by 

running several m ultip lications of a randomly generated m a trix  by an iden tity  

m atrix. We know th a t the result o f any m atrix m ultip lied by an iden tity  ma

tr ix  is the original m atrix  [67, Page 713]:

[A ][I] =  [A]

Where [A] is any m atrix and [J] is a square m atrix, a ll of whose elements are 

0 except for the diagonal elements which are 1:

A ,4 —

1 0  0 0 

0 1 0  0 

0 0 1 0  

0 0 0 1

The results of the m ultip lica tion were then compared to the orig inal random 

m atrix. The d istributed m atrix m u ltip lica tion  worked correctly in  a ll cases.
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5.2 2DFFT

82

We stated in  section 2.5.2 tha t the 2-dimensional fin ite  Fourier transform  can 

be w ritten  as a two dimensional tensor product whose factors are 1-dimensional 

fin ite  Fourier transforms. Let [A] be an L  x M  2-dimensional complex m atrix. 

The L x M  2-dimensional transform  of [A] denoted by T{A jĵm ) is the L x M  

2-dim ensional array [B] defined by:

M —1 L —l

Br,s A lime2^ Le2̂ M
m—0 1=0

W hich can be w ritten  in  a compact m atrix  notation:

\B] =  F{L)\A)F(M )

This method is called row-column because it  computes [B] by a sequence of 1- 

dimensional fin ite  Fourier transforms of the rows of [A] followed by a sequence 

of 1-dimensional fin ite  Fourier transforms of the resulting columns. The ma

tr ix  [B] is computed in  two stages. F irst an intermediate m a trix  of Fourier 

transforms of the rows is computed, then a second series of Fourier transforms 

of the columns is performed on the resulting m atrix.

r  F I  : F 2  :

A n  A i 2 

^  A 21 A 22

A n A 12 • ‘ A in F I A n A \2  • Ain

A 21 A 22 ' • A 2n F n A 21 A %2 ’ ’ A 2n

Anl A n 2 ■ . A F n Anl An2 ■ • A
A.n l

F N  : 

A-ln

A 2 n

4̂-rm
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5.2 .1  S eq u en tia l A lgorith m

2-dimensional FFT is quite often implemented using a brute force sequential 

method. The target m atrix  is handled on row by row and column by column 

basis. The algorithm  uses two simple loops tha t traverse every row and every 

column of the m atrix. Such an implementation is illustra ted  in  the pseudocode 

below:
Read M a trix  [A]n>m 

For % — 1 To n

FFT{Ai,m)
Next i

For i  =  1 To m 

F F T (A n>i)

Next i 

Store [A ]re,m

5.2 .2  P ara lle l A lgorith m

This algorithm  is very simple and works very well on a single processor. In  

order to implement th is algorithm  in  a parallel manner several issues need 

to be addressed. Computers store data in  memory in  a sequential manner. 

M ultidim ensional data structures such as arrays are always mapped onto a 

continuous set o f memory locations. For example, a 4 x 4 array w ill be stored 

in  sixteen consecutive memory locations. I f  we assume th a t each array ele

ment requires one byte of storage and tha t the firs t array element is stored 

at memory location M , then the firs t element of the second row is stored at 

M  +  4. The firs t element of the th ird  row is stored at M  +  8 and the firs t 

element o f the fourth  row is stored at M  +  12. The follow ing form ula is used
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to  translate high level transcript notation of the element a[i][j] or m atrix A XtV: 

a[i}[j] — Mem Location(a^r” T”  x ( x x j ) + j

where a[i]\j] is the value we want to access and a[0][0] is the memory location 

o f the firs t element of the A XXy m atrix. This of course presents a problem when 

a set columns is sent to a remote machine w ith  its  own local memory. The set 

o f columns would be mapped into a set of rows resulting in  computations on 

the wrong data.

In  order to avoid this problem the follow ing solution is proposed. The data 

resulting from  row FFT computations would be “rotated” in  such a way tha t 

columns would become rows and vice versa:

A n A n  '

1
e

I

y-* to t—1 A n

A 21

...
to to • A^n

rotate =$■
A n 2 ' • A 22 A 12

A nl A n 2 ’ ■ A A A 2n A in

When data are rotated we can use the same algorithm  to perform  the FF T  on 

both  rows and columns w ithout compromising the in tegrity  of the data.

We recognize tha t the final result depends on the F F T ’s performed on a ll rows 

or columns o f the m atrix; however, F F T ’s of each row or column can be per

formed independently from each other. This observation leads us to believe 

th a t we could perform F F T ’s on d istinct rows or columns simultaneously, in

dependently from  each other. Consider a 2-dimensional Fourier transform  of 

a 2 x  2 m atrix  [A]:
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m * x 2) =  F ...
...

..1

H-1 A 12
\

\ A 21 1
CSCS )

Suppose we could use two independent processors to perform the transform  

Jr(A 2x2)- F irst we could use each processor to perform 1-dimensional Fourier 

transform  on one d istinct row of the m atrix  [A ]:

Processor 1

F  ^  A n  A 12

Processor 2
□

F  \ Aoi Ai-22

Before computing FFT on the columns o f [A] we need to  collect the results 

and combine them into an intermediate m atrix [A']. The intermediate result 

m a trix  [A!] has to be then rotated in  such a way tha t the columns become rows:

Rotate
/

' A!n A '12 A' A 'a 2\

\ _ ^ 2 1 A '/1 22 ) A '
_ ^ 1 2 1

CS 
 ̂

CS

Then we could use each processor to perform  1-dimensional Fourier transform  

on one d istinct row of the m atrix [A ']:

Processor 1

T A ' A 'A n  A 2i

Processor 2

F  (  A '12 A 22

We again collect the results and combine them into one m atrix  [A " ] . We could 

then leave the results in  tha t form  or rotate the result m atrix [A"] back to  the 

orig inal form:
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Rotate
A" A "/ i n  / i 2 1

A" A "  12 22

A"

A" ^21

A"12

A"

The resulting m a trix  [A"] would then contain the result of a 2-dimensional 

Fourier transform  of [A],

5 .2 .3  C lu ster  Im p lem en ta tion

Consider the follow ing cluster infrastructure. There exist N independent com

puting entities ( Cluster Members or CM) capable of perform ing 1-dimensional 

fast Fourier transform  (FFT) on a rb itra rily  sized m atrix [A] whose dimensions 

are a power of 2.

There exists a supervising computing entity (Cluster Server or CS) which is 

coordinating any computing activities in  the cluster. The CS is aware of each 

and every CM available for computations. The CS divides the com putational 

task evenly among a ll C M ’s. This means tha t data are partitioned and sent 

to  a ll CM ’s.

Each CM is w aiting for data to compute on; when it  receives the data (set 

of rows) it  performs an FFT on every row of the m atrix. The results of the 

computation are sent to the computer where the data originated from  (CS). 

The CS receives a ll results, combines them into one logical entity, and reor

ganizes the results in  such a way tha t another series o f 1-dimensional F F T ’s 

could be performed. The reorganized m atrix is partitioned and each p a rtition  

(set of rows) is sent to  a ll CM ’s for computations.

The results are again combined into one logical entity and stored for later 

analysis.
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Cluster Server Pseudo Code:

Read M a tr ix  [A]

For i = l  To N

Connect to  C lu s te r  M ember[i]

Send [A ]_ {n /N ,m }

D isconnect from  C lu s te r  M em ber[i] 

Next i

For i = l  To N

Connect to  C lu s te r  M em berti] 

Receive [A ’ l.-C n/N .m }

D isconnect from  C lu s te r  M em ber[i] 

Next i

R o ta te  [A 5] _ { n sm}

For i = l  To N

Connect to  C lu s te r  M em ber[i]

Send [A ’ ]_ {n /N ,m }

D isconnect from  C lu s te r  M em ber[i] 

Next i

For i = l  To N

Connect to  C lu s te r  M em ber[i] 

Receive [A }J ]_ {n /N ,m }

D isconnect from  C lu s te r  M ember[i] 

Next i

S to re  [A ’ ; ]_ {n ,m >

Cluster Member Pseudo Code:
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Do
Listen f o r  C onnection from C lu s te r  S erver 

Connect to  C lu s te r  Server 

Read Matrix [A]_{n,m>
For i=l To n 

FFT ( [A ] _{i,m»
Next i

Connect to  C lu s te r  Server 

Send R e su lt [A , ]_{n ,m >

D isconnect from  C lu s te r  S erver 

End Do

To demonstrate the above algorithms we w ill perform a 2-dimensional FFT 

on one 4 x 4  data m atrix using a cluster w ith  four CM ’s. Consider the m a trix  

[A] ix4-

Mi 4.12 4 i3 4 i4

4̂.21 4 22 4 23 4 24

-4.31 4 s2 4 s3 434

4-41 442 443 444

The CS needs to  p a rtition  the data and send them to  the partic ipating C M ’s. 

Each CM w ill receive one row of [A ]:
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CM 1:

CM 2:

CM 3:

CM 4:

A l  —  A ll -A-12 Ai3 Ai4

A2  — A 21 A 22 A 23 A 24

A3 — A 31 A 32 A 33 A 34

A4 — A41 A 42 A 43 A44

Each CM w ill then perform FFTs on the rows it  has received and send the 

results to the CS:
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CM 1:

□
F (A l)  =  M l'n  A1 '12 A1'13 A T 14

CM 2:

□
T { A 2 ) =  A2 '21 A2 '22 A223 A2'24

CM 3:

□
JF (A 3 ) =  A3'S1 A3!j2 A3'33 A3^4

CM 4:

□
F(AA) — A441 A442 A443 A444

The CS w ill assemble the ind ividual results into one m atrix:

(  A l '
□

\

A 2I
□

A3'
□

^  A 4 ' /

A 1 to A 113 A '14

A 121 A ’^ 2 2 A '23 A 'A 24

A 1^ 3 1 A '32 A '33 A '34

A 1 to CO A '44

The CS w ill then rotate the resulting m atrix, so tha t a series of 1-dimensional 

F F T ’s can be performed on the columns of [A']:
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Rotate

/ ' A C A'
1 2

A'■^13

1.........

\ A'/ i n A'
2 1

A'^ 3 1

»

^ 2 1
A'

^ 2 2
A' A' A'

1 2
A'

2 2
A'•/1 32 A'42

A' A'/ i 32 A'^ 3 3 A'^ 3 4
A ’

13 A'23 A' CO 
** Tf»

V A'_ '‘ M l A'42 A!43 A'^ 4 4 A'
_ a 14

A'/ i 2 4 A'^ 3 4

-----1

The resulting m atrix  [A '] w ill then again be partitioned and its  rows sent to 

participating CM ’s:

CM 1:

CM 2:

CM 3:

CM 4:

A l' =  A'n  AC AC A '21 Ml M l

A2' =  AC AC AC A'd42

A3' A' A'
A n  23 A' A‘/ i 3 3  / i .•43

A A' =  A> At A> At 
A U  24 ^ 3 4  A U

Each CM w ill then perform an FFT on the rows it  has received and then 

send the results to  the CS:
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CM 1:

CM 2:

CM 3:

CM 4:

F (A 1 ')=  A'U AU A'U A'U

J%42') =  A'U A'U A'U Aa

H A 3 ')=  A’U A i, A'U

•F(44') =  AU AU A'U Am

The CS w ill assemble the individual results into one m atrix:

□ 
c

\

A2"
□

A3"
□

, A4" 
\ )

A"
^ 1 1

A"A 2 l A" A1

A "
/ 1 1 2

A"A 22 A"J i 32 A 1

A"
^ 1 3 A"^ 2 3

A "
33 A1

A"14 A”24 A"2U3 4 A41,

1/
■41

H
42

u
43

n
■44
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5.2.4 C oncluding R em arks

The algorithm  has been implemented in  the C programming language (see 

the listings in  the Appendix). The correctness of its operation was tested by 

running a series of 2-dimensional F F T ’s on several matrices whose dimensions 

were a power of two. The matrices contained the data of a 2-dimensional pulse 

function. I t  is known tha t the values of a ll elements of a 1-dimensional FF T  

o f a pulse function are close to  zero, except for the value of the firs t element, 

which is close to the sum of a ll elements of the original data m atrix:

u
[A]1x4= 1 1 1 1

□

I f  we then perform a series of 1-dimensional F F T ’s on the rows of a square 

m a trix  [A] we w ill obtain a m atrix whose entries are a ll 0 except for the entries 

in  the firs t column:

1 1 1 1 4 0 0 0

1 1 1 1
= >  Frvws{[A\) =

4 0 0 0

1 1 1 1 4 0 0 0

1 1 1 1 d 4 0 0 0

Performing a series of 1-dimensional F F T ’s on the columns o f the m a trix  

w ill result in  a m atrix whose elements are a ll 0 except for the value o f A lti 

which w ill again be the sum of a ll elements of the firs t column:
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4 0 0 0 16 0 0 0

4 0 0 0
" PyAumns ([A]) —

0 0 0 0

4 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

We could use th is property of the Fourier transform  to test the correctness 

of the computed results. A fter each com putation of the 2-dimensional FFT of 

a square pulse function we test i f  the value of the firs t element is equal or very 

close to  the product o f the m a trix ’s dimension. The values of the rest of the 

elements should be close to 0.

The d istribu ted 2-dimensional FF T  worked correctly during a ll tests con

ducted.

5.3 Electric Field Approximation

Section 2.5.2 illustra ted the algorithm  for electric fie ld approximation tha t can 

be performed on a d ig ita l computer.

Let [A] be an n  x m 2-dimensional m atrix representing a plate on which we 

want to  calculate the electric field. The potential values to  which the plate 

is subjected are stored in  the firs t (top), last (bottom ) rows and firs t (le ft) 

and last (righ t) columns. The in itia l values of the grid m atrix  are set to  the 

average value of the potentials the plate is exposed to:

A __ Ptop T Pbottom T Pie f t  T Pright ( p. ^
A i,j ~  a
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A fte r the m atrix has been in itia lized one can proceed and calculate the grid 

values using the algorithm  presented in  section 2.5.2:

A- ■ =  Ai+1J +  +  +  A j- 1  3̂

5.3 .1  S eq uentia l A lgorith m

Mesh calculation algorithm  is frequently implemented in a sequential manner 

using three nested loops. The target m atrix is handled on an element by el

ement basis. The outer loop of the algorithm  is used to perform  a number 

of iterations required for satisfactory convergence of the values of the grid 

elements. The two inner loops traverse every row and every column of the 

m atrix  and allow for the calculation the values of the grid elements. Such an 

implementation is illustra ted in  the pseudocode below:

I n i t i a l i z e  M a tr ix  [A]

For i=l To Maxlterations 
For y = l To n-1 

For x = l To m-1

A_{x,y }= (A _ {x + l,y}+A_{x-l,y}+A_{x,y+l}+A_{x, y - l } ) / 4  

Next x 

Next y 
Next i

S to re  [A ]_ {n ,m }
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5.3.2 Parallel Algorithm

The sequential a lgorithm  illustra ted in  section 5.3.1 works very well on a single 

processor (N U M A) computer; however, in  order to implement th is algorithm  

in  a parallel manner several issues need to  be addressed. D istributed imple

mentation o f th is algorithm  requires partition ing  of the grid and assigning the 

partitions to  every computer participating in  the computation. This pa rtition 

ing and assignment of the data is usually done by one machine, which is aware 

of a ll the machines partic ipating in  the computations.

Suppose we could use two independent processors to perform  the mesh calcu

lations on a n x n m atrix  A. F irst we would divide the data evenly and then we 

would allocate the data to  both processors to perform the mesh calculations:

Processor 1 Processor 2

A l,! ‘ ’ ’ A i,re An/2+1,1 ' ‘ ' An/2+1,n

An/2,1 ' ‘ ' An/2,n Ara,l • ' ' An,n

Then we could use each processor to perform  one ite ra tion of the mesh calcu

la tion  on the data i t  has access to:

Processor 1 Processor 2
For every element calculate: For every element calculate:

  A j + i j + A i - x j + A i , j + i + A j j - i  a____ A j+ 1, +  A j _ i ,,- +  A,,,■+1 +  A,,7-_ i
,3 ~~ 4 ~ ' 4

We would need to repeat the calculations several times in  order to  obtain a 

satisfactory convergence of the grid values. We then collect and combine the 

results into the result m atrix  A 1.

The problem w ith  the algorithm  is tha t the mesh values at the boundaries 

(rows n/2 and n /2+ 1) w ill not be calculated as there are no data required to 

calculate them. Since the data reside on machines physically d is tinct from each
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other, additional communications are required in  order to  ensure the correct 

grid  values at the pa rtition  boundaries. The communications can either take 

place among the participating machines or they can be performed between the 

participants and the machine acting as a server. A  d istributed algorithm  tha t 

produces correct grid values of the m atrix and the boundaries is listed below:

Processor 1
For every element calculate:
A _ A t+ ij+A i-i.j+A i.j+ i+A j,,--!

~~ 4

SendRows(Ai, A 2, A nj 2- i , A ni 2) 

ReceiveRows(Ai, A 2, A n/2_ i, A n/2)

Processor 2
For every element calculate:
A   A j+ u + A i- i ' i+ A i j+ i+ A j ' i - i

~  4

SendRows(An/2, A „ /2+i, A re_ i, A n) 

ReceiveRows(Ari/ 2, A n j2+ l, A n„ 1, A n)

In  order to sim plify the cluster member algorithms and m inim ize the delays 

caused by the computations of the grid values at the boundaries, the server- 

participant type o f communications has been implemented. The partic ipant’s 

communications algorithm  has been simplified, as it  is the server th a t assigns 

and coordinates the data flow to and from the participants. The server is also 

aware o f the boundaries resulting from  the partition ing  o f data. Communica

tions can be performed either in  a synchronous or an asynchronous manner. 

Since a ll the participants had the same CPU and the number of data points 

required to compute the grid values at the boundaries is only 4N  per par

tic ipant, a synchronous type of communication was chosen and implemented. 

Each processor sends the two top (A x, A 2) and bottom  (A „_ x, A n) rows to  the 

computer th a t assigned the data to  them. That computer performs the cal

culations of the grid  values at the boundaries. The computed grid  values are 

sent back to  the computers they originated from.
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5 .3 .3  C lu ster Im p lem en tation

Consider the follow ing cluster infrastructure. There exist N independent com

puting  entities (Cluster Members or CM) capable of perform ing grid values 

approximations on an a rb itra rily  sized m atrix [A].

There exists a supervising computing entity (Cluster Server or CS) which is 

coordinating any computing activities in  the cluster. The CS is aware o f each 

and every CM available for computations. The CS divides the computational 

task evenly among a ll CM ’s. This means th a t the data are partitioned and 

sent to  a ll C M ’s.

Each CM  is w aiting for data to compute on; when it  receives the data (set 

of rows) it  computes the values the grid elements. A fte r the computations 

are complete CM sends the values o f the boundary rows {1 and n or top and 

bottom ) together w ith  the values of the neighbouring rows ( 2  and n-1 ) to  the 

cluster server for ‘mending’ . The mended rows are used in the next round 

o f computations. The computations are repeated a predetermined number of 

times specified by the CS. Finally, the results o f the com putation are sent to 

the computer where the data originated from  (CS).

The CS receives a ll results and combines them into one logical entity repre

senting the electric field values on the given plate.

Cluster Server Pseudo Code:

Read M a tr ix  [A]

Fo r i = l  To N

Connect to  C lu s te r  Member[i]
Send [A ]_ {n /N ,m}

D isconnect from C lu s te r  M em ber[i]
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Next i

For i = l  To N u m O fIte ra tions  

Connect to  C lu s te r  M em ber[i]

R eceive [B ]_ {n /4 ,m }

D isconnect from  C lu s te r  Member [ i ]

Mend [ B ]

Connect to  C lu s te r  M em ber[i]

Send [B ]_ {n /4 ,m >

D isconnect from  C lu s te r  M em ber[i]

Next i

For i = l  To N

Connect to  C lu s te r  M em ber[i]

Receive [A ]_ {n /N ,m }

D isconnect from  C lu s te r  M em ber[i]

Next i

S to re  [A ]_ {n ,m }

Cluster Member Pseudo Code:

Do

L is te n  f o r  C onnection from  C lu s te r  S erver 

Connect to  C lu s te r  S erver 

Read M a tr ix  [A ]_ {n ,m }

For i = l  To N u m be rO fIte ra tions  

C a lc u la te  G rid (A )

Connect to  C lu s te r  S erver 

Send [A ]_ {n /4 ,m >
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Disconnect from C lu s te r  S erver 

Connect to  C lu s te r  S erver 

Receive [A ]_ {n /4 ,m }

D isconnect from  C lu s te r  S erver 

Next i

Connect to  C lu s te r  S erver 

Send R e su lts  [A]_{n,m}
D isconnect from  C lu s te r  S erver 

End Do

To demonstrate the above algorithms we w ill calculate the potentia l values of 

a 16 x 16 grid m atrix using a cluster w ith  two CM ’s. Consider the m atrix 

[ A] 16x16-

A i,i A 1|2

A-2,1 A.2,2

A i6,l A ib,2

- A^is A  1,16

■ A.2,15 A 2i16

■ A i5)i6 A ie j6

The CS needs to p a rtition  the data and send them to  the partic ipating CM ’s. 

Each CM w ill receive eight rows o f [A ]:
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CM  1:

CM  2:

A l  =

4;L(1 A i t2 

A2,l 42,2

As,,i A%£

Ai,i5 A iti e 

A2,15 4 2,i6

4 s , 15 4 g , 16

4 2  =

4g,i 4g,2 

4io,l -̂10,2

• -4-9,15 -4-9,16

■ 4 io ,15 4 x0,16

4 i6,i  4 16,2 1-15,16 4 i 6, i6

Each CM  w ill then perform  one ite ra tio n  o f the calculations on the rows it

has received: 
CM  1:

ComputeGridV alues(A l)

A i i

*■21

*-71

U2

4'022

A'l\n72

481 4 s2

4 l l 5  4 h 6  

4 '215 4.216

4 7i5 4816

4815 A 816
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CM  2:

ComputeGridValues(A2) =

^9,1 ^9,2

A i o . i  ^ 1 0 ,2

Ai5,l -4 -15,2 

4x6,1 4 16i2

4,9,15 A 9,16

10,15 ^10,16

4 -15,15 4 i 5j i 6 

4 l 5 16 4 i 6 16

A fte r every ite ra tio n  the C M ’s w ill send the boundary rows containing the in 

term ediate results o f the calculations to  the CS fo r adjustm ent:
CS:

M  endBoundaries(T empA)

4 7 1 A’72 A'^*■715 4816

4 8 1 4 ^ 2  . ■ 4 ' 15 4816

4g,i 4-9,2 • • 4 g > 1 5 4g,ie

4 io ,i A'^ 1 0 , 2  ■ A'■ 10,15 4 io ,16

The corrected boundaries are then sent to  the C M ’s for the next round o f com

putations. The operation is repeated N tim es (num ber o f ite ra ta tio n  or u n til 

a satisfactory convergence of the results is ob ta ined). A fte r a ll ite ra tions are 

com pleted the CS w ill assemble the in d iv id u a l results in to  one m a trix :

AY'

AT'

\
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5.3.4 Concluding Remarks

The algorithm  has been implemented in  the C programming language (see the 

listings in  the Appendix). The correctness of its  operation was tested by run

ning a series calculations of potential d is tribu tion  on a plate by one computer 

and by m ultip le  computers and then comparing the results.

The d istributed version o f the algorithm  worked correctly during a ll tests con

ducted. A  sample output of the computed results by the cluster is p lotted in  

figure 5.5.

P o t e n t i a l

100

Figure 5.5: Mesh calculations

5.4 M ultitreaded Server Applications

The Cluster Server coordinates a ll computations in  the designed cluster. The 

server is the only computer aware of a ll cluster members and thus capable of 

u tiliz in g  the ir resources. During the design particular care was paid to  the 

development of an environment th a t would not be restricted to  a specific con

figuration. The d istribu tion  of work is determined at the run tim e. The server, 

depending on the number of partic ipating cluster members, creates a working
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thread for each cluster member participating in  the computation. The thread 

is given a fraction o f the data to  be computed on and then independently 

conducts communications w ith  the assigned cluster member. The number of 

working threads is restricted only by the memory constrains of the server. 

When a ll cluster members finish the computations, the ir results are collected 

and the performance of the cluster is stored in a database for fu ture analysis. 

No fau lt tolerance has been implemented in  the development system. The 

server, however, is capable o f recognizing the fact th a t a cluster member is 

not responding. Upon discovery of a problem the server notifies the operator 

about the cluster member causing a problem.

5 .4 .1  M atrix  M u ltip lica tio n

In  section 5.1.3 a pseudocode for the cluster server was described. A  c la rifi

cation is needed at th is point. W ithout the use of threading techniques the 

parallel algorithm  performance would be impaired if  it  were performed by the 

server in  a sequential manner as listed below.

Cluster Server Sequential P seu d o  Code

The two loops responsible for sending and receiving data are sequential by 

the ir nature. The algorithm  should be implemented in  a more efficient man

ner:
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For i = l  To N
Connect to  C lu s te r  M em ber[i]
Send [A ]{n /N ,n }
Send [B ]{n ,n >
D isconnect from  C lu s te r  M em ber[i]

Next i
For i = l  To N

Connect to  C lu s te r  M em ber[i]
Receive [C ]{n /N ,n }
D isconnect from  C lu s te r  M em ber[i]

Next i

Figure 5.6: Sequential Server Code

Cluster Server Multithreaded Pseudo Code:

For i  =  1 To N

Create Thread i  Responsible for Communicating 

w ith  Cluster Member i

Next i

For i  =  1 To N

W ait for Thread % to  Finish

Next i

T his algorithm  w ill attem pt to communicate w ith  a ll partic ipating cluster 

members simultaneously and the throughput of the server w ill increase.

5.4.2 2D -F F T

The 2-D FF T  parallel algorithm  listed in  section 5.2.2 suffers from  the same 

problem as the m a trix  m ultip lica tion algorithm  described in  the previous sec

tion. A m ultithreaded version was developed in  order to  enhance the perfor

mance of the server.
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5 .4 .3  Shared  M em ory A ccess

The use of threaded techniques improves the throughput of the server. How

ever, communication w ith  m ultiple clients simultaneously complicates memory 

management, as simultaneous accesses to  shared variables can take place. We 

know th a t on a shared memory computer each CPU can access any memory 

location. I t  is possible tha t the running threads m ight attem pt to  update the 

shared memory areas simultaneously. The usage o f locks was considered for 

synchronizing access to  the shared memory. Such a protection is always ex

pensive [91]. I t  can be seen from  the server program lis ting  tha t each thread 

works only the memory area it  was assigned to  work on. Any updates in  tha t 

area would only be performed by one thread at a tim e; hence it  is safe to allow 

the threads access to  the shared memory at any time.
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Experim ental D ata and R esults

The prim ary objective of the conducted experiments was to determine the 

cluster’s functionality and applicability. Several synthetic and practical appli

cations have been developed and used to  obtain the cluster’s characteristics. 

Synthetic applications were used to  obtain the cluster’s I/O  characteristics and 

dependencies. In  particular the system latency and the I/O  throughput were 

determined. Practical applications were used to  obtain the raw performance 

(wall tim e clock SpeedUp) of the system. The follow ing sections demonstrate 

sample results of a ll conducted experiments

6.1 System  Latency

System latency has been defined in  section 2.1.1 as the amount o f tim e required 

for the system to setup computations. The implemented cluster is intercon

nected using an Ethernet network, hence its latency is strongly dependent 

on (related to) the latency of the interconnecting medium. The latency of 

the system was determined experimentally by recording the data transfer val-

107
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T rec TransferT total
1200

- -  1000

- 800

-  600 r
T total = 3 + 1.79E-03X

400

T ree = 2.1 + 1.78E-03x
- 200

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Data Size [Byte]

Figure 6.1: Machine latency on 10MBit network

Network
Latency
[ms]

10 M b it 4
100 M b it 3

Table 6.1: Network latency

ues of various batches of data. The data were sent from  the cluster server 

to a cluster member. The amount of data was increased u n til the transfer 

rate reached its maximum for the given Ethernet technology; 0.97[M B/s] and 

8[M B/s] for 10M Bit and 100MBit Ethernet networks, respectively. The slope 

of the curve was approximated and the results were interpolated to  determine 

network latency (figures 6.1 and 6.2).
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T total  T rec - Transfer
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Figure 6.2: Machine latency on 100MBit network

6.2 D ata Transfer

The computers partic ipating in  the experiment are fu lly  independent machines 

interconnected via  an Ethernet network. I t  is obvious th a t the performance 

of the cluster w ill depend on its  network performance and data transfer capa

b ilities. Applications tha t process a lo t of data w ill be subject to  the network 

performance of the cluster. Applications tha t perform a lo t of processing lo

cally w ill be subject to  the CPU performances o f the cluster participants.

The data required for cluster based computations can be transferred in  either 

raw or marshaled form at. Raw form at is simpler to implement; however, the 

Marshalled form at is safer and works regardless of the hardware architecture 

of cluster participants.
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6.2 .1  R aw  D a ta  Transfer

Raw form at implementation does not translate the data in  transfer in to  a 

form at th a t is hardware architecture independent. The receiver w ill receive 

and interpret the received data the same way the sender sends, it  provided 

both the receiver and the sender run on the same hardware architecture (1x86 

to  1x86, SUN to  SUN, etc.)

This method is re lative ly safe, provided the designer uses only one type of 

hardware, or i f  the hardware architecture implementation is the same on a ll 

machines partic ipating in  the cluster.

6 .2 .2  M arshalled  D a ta  Transfer

In  order to  ensure tha t the data in  transfer w ill always be interpreted correctly, 

regardless of the hardware architecture of the sender and receiver, one would 

need to  convert the data to be transferred to a common network format. The 

sender converts the data from  its  hardware form at to the network form at. The 

data then are sent to the receiver which in  tu rn  w ill convert the data from 

the network form at to  its  native architecture form at. Each transfer requires 

additional processing of both the sender and the receiver.

6 .2 .3  C lu ster  D a ta  Transfers

The star infrastructure tha t was used to implement the cluster is subject to 

Ethernet technology performance. The Ethernet technology does not handle 

simultaneous accesses linearly; however, for the six cluster member configura

tion , its  performance does not degrade drastically.

Several experiments were conducted in  order to determine if  the network u ti

liza tion  had any impact on overall performance of the cluster.
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Figure 6.3: Transfer Rate on 10M Bit Network

Figures 6.3 and 6.4 show execution times and effective transfer rates of four 

cluster configurations connected via a 10MHz and 100MHz Ethernet network.

6.3 M atrix M ultiplication

The d istributed m atrix m ultip lica tion  program described in  section 5.1 has 

been run on the cluster and the execution times for various problem sizes have 

been recorded. The SpeedUp of the cluster has been calculated and the results 

are shown in  figures 6.5 and 6.6.

6.4 2D FFT

A popular engineering application, namely the 2D-FFT was chosen for the 

second performance evaluator of the cluster. The algorithm  used for computing
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Figure 6.4: Transfer Rate on 100MBit Network
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Figure 6.5: M a trix  m u ltip lica tion  speedup on 10M Bit network
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Figure 6.6: M a trix  m ultip lica tion speedup on 100M Bit network

the 2D-FFT in  a d istributed manner was described in section 5.2. The program 

was on the cluster and the execution times for various problem sizes were 

recorded. The SpeedUp of the cluster was calculated and the results are shown 

in  figures 6.7 and 6.9.
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Figure 6.7: 2D-FFT speedup on 10M Bit network
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Figure 6 .8: 2D-FFT SpeedUp on 100MBit network
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Figure 6.9: Large memory 2D-FFT SpeedUp on 100MBit network
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6.5 Mesh Calculations

The th ird  engineering application run on the cluster computed the grid values 

of a 2-dimensional mesh. The algorithm  used for computing the values of 

the grid  in  a d istributed manner was described in  section 5.3. The program 

was run on the cluster and the execution times for various problem sizes were 

recorded. The SpeedUp of the cluster was calculated and the results are shown 

in  figures 6.10 and 6.11.
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Figure 6.10: Mesh calculations SpeedUp on 10M Bit network
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Figure 6.11: Mesh calculations SpeedUp on 100M Bit network
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D iscussion

Several analyses of the collected data were performed. These analyses are 

presented in  the sections to follow.

7.1 Performance and Scalability

Prom section 6 we see tha t the cluster SpeedUp stops oscillating when the 

size o f the data set becomes large enough (over 50% o f the tim e is spent 

on computations, as opposed to I/O  operations. In  order to determine the 

maximum possible SpeedUp of the system, the execution times of the cluster 

configurations for the largest data sets were analyzed.

7.1.1 D istributed M atrix M ultiplication

The SpeedUp of d istributed m atrix m ultip lica tion  for the largest data set is 

shown in  figure 7.1. The SpeedUp for both 10M bit and 100Mbit configurations 

is a linear function of the number of cluster members.

The SpeedUp of the 10Mbit configuration can be regressed as a linear function

118
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Figure 7.1: Large data m a trix  m ultip lica tion  SpeedUp

as follows:

SU{n) =  0.8314n (7.1)

Sim ilarly, the SpeedUp of the 100Mbit configuration can be regressed ac

cording to  the follow ing expression:

SU(n) =  0.9594n (7.2)

7 .1 .2  D istr ib u ted  2D F F T

The SpeedUp of distributed calculation of 2DFFT for the largest data set is 

shown in  figure 7.2. The SpeedUp for both 10M bit and 100Mbit configurations 

is a logarithm ic function of the number of cluster members.

The SpeedUp of the 10Mbit configuration can be regressed using the follow ing 

equation:

SU{n) =  0.2021 ln(ra) +  1 (7.3)
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Similarly, the speedup of the 100Mbit configuration can be regressed using 

the follow ing equation:

SU(n) =  0.8721 ln (n ) +  1 (7.4)

2.5

SpeedUp ioo = 0.8721Lnl n) + I

R2 = 0.9901

A — 100MBit

SpeedUpio = 0.2021Ln(n) + 1 ■m— 10MBit

R2 = 0.979

0.5

Computers

Figure 7.2: Large data 2D-FFT SpeedUp

The SpeedUp for 2D-FFT was observed to  be substantially lower for the 

largest data sets on the implemented cluster by comparison to  the low data 

sets. Analyses of the problem determined tha t some of the cluster members did 

not have enough RAM to  handle the calculations w ithout extensive swapping. 

The amount of RAM  in  the cluster member computers was doubled and the 

experiment involving the calculations of 2D-FFT for the largest data set was 

conducted again. The new results of the experiment are shown in  figure 7.3. 

A super SpeedUp was achieved in  the new configuration w ith  a SpeedUp of 

7.9 on a six machine cluster. The reason for the super SpeedUp was the 

fact th a t the base (reference) tests for the largest data set were conducted on
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a cluster member whose memory was barely adequate to  store the data on 

which it  computed. Some minor swapping occurred, which was compensated 

by the swapping o f the cluster members equipped w ith  less memory. When the 

memory of a ll cluster members was upgraded, in  order to elim inate swapping, 

super SpeedUp was achieved.

100MBit
Large Mt 
100MBitcu

■*— 10MBit

Computers

Figure 7.3: Large data 2D-FFT SpeedUp (Super SpeedUp)
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7 .1 .3  D istr ib u ted  G rid C alcu lation

G rid  calculations fa ll into medium I/O  category of cluster calculations. The 

speedup of d istributed m atrix m ultip lica tion for the largest data set is shown 

in  figure 7.4. The speedup model for the 10M bit configuration is a logarith

m ic function of the number o f cluster members. The speedup of the 10Mbit 

configuration can be calculated using the follow ing equation:

SU(n) =  0.5255 ln (n ) +  1.0337 (7.5)

The speedup model for the 100Mbit configuration is a quadratic function of 

the number of cluster members. The speedup of the 100Mbit configuration 

can be accurately regressed on the following quadratic expression:

SU{n) =  —0.0373n2 +  0.9531n +  0.0829 (7.6)

SpeedUp ioo = -0.0373n + 0.953In

R2 = 0.9938

•A— 100MBit

■«— 10MBit

SpeedUp ip = 0.5255Ln(n) + 1.0337

R2 = 0.9912

Computers

Figure 7.4: Large data grid calculation SpeedUp
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7.2 Distributed M atrix M ultiplication M odel

ing

The performance modeling of any computer system is a complex, application 

and data specific, task. The sections below discuss the developed models for 

the cluster’s SpeedUp while perform ing m atrix  m ultip lication.

7.2 .1  D iscrete  M odel

The discrete model appears to be well suited for the cluster perform ing the 

computations on various (discrete) data sets.

IO Performance

The implemented cluster uses Ethernet network for member communications. 

From section 2.1.1 it  is known th a t data on an Ethernet network are trans

ferred in  Ethernet frames tha t are later encapsulated by T C P /IP  frames. The 

developed model includes an I/O  component whose analysis is included below.

M atrix Multiplication I/O  Analysis

D istributed m atrix  m ultip lica tion requires re lative ly low I/O . In  order to  mul

tip ly  two matrices of size N  x N  the follow ing amount of data needs to be 

transferred:
N 2

l / 0 ( n ,  N ) =  S O F ({N 2 +  — }n  +  N 2) (7.7)
?%

where SOF is the machine size of a floating po in t number, n the number of 

cluster members, and N  the number of rows and columns of a N  x N  square 

m atrix.
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On a network w ith  a fin ite  packet size, equation (7.7) needs to  be rearranged 

in  order to calculate the number of packets required to  send the data over the 

network:

„  , . r S O F (N 2) S O F (N 2 /n )  r S O F (N 2 /n ) ,  . .
Packets(n, N ) =  { - — — } „  +  {  M p g  } „  +  {  M p g  }n  (7.8)

Since the fractional packets cannot be combined, equation (7.8) needs to be 

modified to  allow the calculation of the actual amount of data sent over the 

network. In  order to determine the number o f packets required to transfer 

th a t amount of data the following calculation is performed:

AcbualPackets(n, N )  — 

n rr / r S O F (N * ) „  nTT r r S O F (N 2 / n ) ^  nTT , f S O F (N 2 / n C .
=  B U p i{ - M P S - })n  +  RDP{{ M P S  >)n +  R U P ({' -  M P S  " ' } )n  

(7.9)

where RUp is a round up or ceiling function and MPS is the maximum packet 

size for the medium. We could define I /O  Performance as

I /O  Perffn.N) =  ■ ■■ ( ™ )
Actual Packets(n, N )

and after the expansion we obtain: 

I /O  Perf(n,N) = RUp({^mP})n + itt,F({*£§gM})„ + mp({s j m })n
(7.11)

We also define Cluster’s I /O  Performance by comparing the number of packets 

required to send the data to one and n cluster members.

In  order to  calculate the number o f packets required to send three N  x  N  

matrices (m ultiplicands and results) to  one cluster member we need to  perform
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the follow ing calculation:

Packets(l,N) =  (7.12)

The Cluster’s I /O  Perf would then be:

Cluster’s I /O  Perf(n.N) =  (7.13)

after expansion:

Cluster’s I /O  Perf(n,N) =

 _____________________3W P( { S g g l } ) ____________________

R Up({^P})n  + fltlp({S2gM})n + R U p d ^ m })"
(7,14)
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Figure 7.5: Cluster I/O  Performance for a distributed m atrix  m ultip lica tion
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CPU Performance

The implemented m atrix  m ultip lication algorithm  illustra ted in  figure 7.6 re

quires both integer and floating point operations. In  order to  m u ltip ly  two 

N  x N  matrices the processor has to perform the follow ing operations:

•  N 3 floating point m ultip lications [FPM]

•  3N 3 +  N 2 integer m ultip lications [IntM ]

•  N 3 floating point additions [FPA]

•  6N 3 +  2N 2 integer additions [IntA ]

int MultiplyMatrix(float *a, int aRow, int aCol, float *b, int bRow, int bCol, float

int x, j ,  z; 
f or(z=0;z<aRow;z++){

for(y=0;y<bCol;y++){
*(c+(z*bCol+y))=0; 
for(x=0;x<aCol;x++)

*(c+(z*bCol+y)) += *(a+(z*aCol+x)) * *(b+(x*bCol+y));
>

>
return z*y*x;

>

Figure 7.6: M a trix  m ultip lica tion  algorithm

Cluster based, or distributed, matrix multiplication requires partitioning of the 

data among all of the participating cluster members. The data partitioning 

algorithm is illustrated In figure 7.7.

The simple algorithm  allocates A rows of m atrix  A  as well as N  rows of 

m a trix  B  to  each cluster member. The last cluster member is assigned either 

A- rows of m a trix  A or R U p (^ )  rows in  the instance when N  does not evenly
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offset = 0;
for(membercount = 0; membercount<n; membercount++){

cmData[membercount].matrixA = matrixA + offset; //move pointer to desired row of A 
cmData[membercount].matrixB = matrixB; //move pointer to the first row of B 
if(membercount < n-1) //allocate number of rows of array A

cmData[membercount].arrdims[0] = N/n; //integer division of the array 
else //if data does not divide evenly allocate the reminder to the last machine 

cmData[membercount].arrdims[0] = N - (N/n*(n-1)); //reminder 
cmData[membercount].arrdims[1] = N; //allocate number of columns of array A 
cmData[membercount].arrdims[2] = N ; //allocate number of rows of array B 
cmData[membercount].arrdims[3] = N; //allocate number of columns of array B 
cmData[membercount].result = resultmatrix + offset; //move pointer to desired row of C 
offset += N*(N/n); //increment pointer offset for next cluster member

}

Figure 7.7: Data partition ing  algorithm

divide by n. The number of CPU intensive operations performed by the cluster 

w ill then be:

CPUOps(N) =  F P M (N ) +  In tM (N )  +  F P A (N ) +  In tA {N )  (7.15)

The maximum number of operations each cluster member w ill perform w ill 

then be:

M axCPU O ps(n, N )  =  F P M {R U p (— ))+ In tM (R U p (— ))+ F P A (R U p (— ))+ In tA {R U p {— )
n n n n

(7.16)

The theoretical CPU SpeedUp of the cluster w ill then be:

CPU SpeedUp(n,N) =  (7.17)
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and after expansion:

GPU SpeedUp(n,N) =

 N%p m  +  (31V3 +  N 2)In tM  +  N%p a  +  (5 N s +  2 N 2) i ntA_______________________

(R U p & f p m  +  m u p &  +  (R U p(% )2)m tM  +  {R U p & F P A  +  ( 6 ( W p ( f ) 3  +  2 (R U p (R y ) IntA
(7.18)

Cluster Performance

The cluster’s performance is a function of several variables: cluster size, data 

size, setup tim e or latency, communications or I/O  performance, and CPU 

performance. I/O  performance and CPU performance have been determined 

in  the previous sections. The discrete model of the system’s performance 

while perform ing m atrix  m ultip lications can be determined using the following 

relation:

r _ 1 CM Execution Tim e(N) r . AT,
ClusterPerf(n,N,IO, CPU) =  —^  f _-------- ;-----— — r —SystemLosses(n,N)

1 y n CM Execution Tim e(N) v ’
(7.19)

where

1 CM Execution Tim e(N) =  1CM 10 Tim e(N) +  1CM CPUTim e(N)

(7.20)

1 CM 10 Tim e(N) =  Packets(1,N) Packet Transfer Tim e (7.21)
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1 CM CPU Tim e(N) =

FP M (N )FP M T +  In tM (N )In tM T  +  FPA(N)FPAT +  In tA (N )In tA T  1

(7.22)

and

n CM Execution Tim e(N) =  nCM 10 Tim e(N) +  nCM CPUTime(N)

(7.23)

n CM 10 Tim e(N) =  ActualPackets(n,N) Packet Transfer Time (7.24) 

A fter expansion:

n CM CPU Tim e(N) =  F P M (R U p (% ))F P M T  +  In tM (R U p (% )) In tM T

+  F P A (R U p(— ))F P A T  +  In tA (R U p (— )) In tA T  
n n

(7.25)

and
tF

SystemLosses(n, N ) — C —  (7.26)

also

C =  Ct C2 (7.27)

where C\ is a network speed constant and C2 is a dataset constant, both 

obtained experimentally.

1FPMT: Floating Point Multiplication Time, IntMT: Integer Multiplication Time, 
FPAT: Floating Point Addition Time, Int AT: Integer Addition Time.
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Table 7.1: C\ and C2 Values

N etwork /  Constant Ci c 2
10M Bit
100MBit

0.1
0.01

20000
40000

— Mod2 

—m— Mod3

—&— Mod4 

—X— Mod5 

—X— Mod6 

—• — Exp2 

—H~Exp3 

—-—Exp4 

—• Exp 5 

—«— Exp6

Figure 7.8: M atrix m ultip lica tion discrete model
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7.2.2 Continuous M odel

In  order to perform  continuous modeling of the response of the system one 

needs to analyze the cluster as a system th a t changes in  time. The following 

considerations could be made when continuous modeling methods are to  be 

applied.

Let us examine the computational task involving a series of m atrix  m u ltip li

cations. The sizes o f the matrices increase when the calculations o f the last 

com putation are complete. The to ta l tim e required to  perform the computa

tions is the sum of the com putation times of the varied sized matrices. The 

system response is recorded at the end of each ite ra tion and the data is p lotted, 

as in  figures 7.11 and 7.12. The intervals at which the response is recorded 

increase w ith  the increase of the data on which the system computes.

D ata Transfer

The speed at which the system receives the data required for the com putation 

plays a c ritica l role in  the cluster’s performance. Figure 7.9 illustrates the 

average rate at which the cluster receives data. Since the designed cluster used 

shared Ethernet network, the transfer rate was decreasing as more machines 

were added.

CPU Utilization

Experim ental data show tha t w ith  the increase of cluster size the tim e spent 

on calculations decreases. This is m ainly due to system overhead and to  the 

increased complexity of the scheduling and assignment of the tasks to  cluster 

members. The CPU u tiliza tion  was calculated as the ra tio  of the processing
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Figure 7.9: C luster transfer rate

tim e to  the to ta l tim e required for the computation.

CPUum =  ^  (7.28)
-t T o ta l

Exam ination of the experimental data shows tha t, the response of the 

cluster perform ing m atrix  m ultip lica tion often resembles the forced response 

of an overdamped system. The overdamped system response can be calculated 

as the solution o f the second order differentia l equation:

d2SU dSU 1 n _
A^ + p — + ysc/=0 (7 '29)

where A, p, and 7 are now considered as cluster parameters modeling the char

acteristics and SU  is the system SpeedUp.

Equation (7.29) is as a homogenous second-order linear d ifferentia l equation 

w ith  constant coefficients (A, p, 7). The characteristic polynom ial associated 

to  (7.29) is:
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Figure 7.10: Cluster CPU u tiliza tion

P(s ) =  As2 +  ps +  -  (7.30)
7

w ith  roots:

(7 '3 l)

The forced response of the overdamped system characterized by (7.29) is 

of the form  [63]:

SU{t) =  AeSlt +  BeS2t +  F  (7.32)

where A  and B  are constants derived from in itia l conditions, namely:

517(0+) =  A +  B and d5^ ° .±). =  SlA +  s2B  (7.33)
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and 577(0+) =  —F  and ^FjP+1 are obtained experimentally.

Examples o f the regression o f experimental data on a relation of the type 

(7.32) are shown in  figures 7.11 and 7.12. The close match o f the curve w ith  

our data suggests tha t the com putational cluster may indeed undergo damp 

oscillations during its  operation. A lthough th is may not always be the case, 

a significant number of the experimental plots suggests tha t. An immediate 

conclusion to th is observation is tha t the performance of the computer cluster 

may be at times highly dependent on the “response” frequency of the sys

tem when processing different computational loads. As many experimental 

data cannot be regressed w ith  sufficient accuracy on the solution of a damped 

oscillation, it  follows tha t normally homogenous equation (7.29) may be too 

simple to  capture the entire range of observed system response. We only want 

to  point out tha t occasionally the simple modeling presented here appears to 

be appropriate and th a t it  signals the oscillatory properties of the cluster.

Figure 7.13 gives the values of A, p and 7 obtained from  the best f it  regres

sion on relation 7.32. A  closer analysis of the data revealed some interesting 

facts related to  parameters A, p and 7 .

1. I t  has been observed tha t the linear increase in  7 is d irectly proportional 

to the increase of memory in  the system

Memory (n) =  K iy (n ) (7.34)

2. The linear decrease in p is d irectly proportional to  the decrease of the 

effective data transfer rate of the system.

Tran s fe r  Rate{n) =  p{n) (7.35)
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Recorded Data
Model

50 100
Time[s]

150

Figure 7.11: M a trix  m ultip lica tion 5 machine SpeedUp model 100MBit

3. The decrease in  A is d irectly proportional to the decrease in  CPU u tiliza 

tion  of the system. The following relation for A and CPUutu has been 

observed:

CPUutil{n) =  A (n) (7.36)

The performance increase of the system (SpeedUp) is closely related to a ll 

o f those parameters. The model demonstrates tha t there are areas when it  

is possible to  predict, w ith  reasonable accuracy the system SpeedUp, as a 

function of tim e, using the observed characteristics.
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• Recorded Data
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Figure 7.12: M a trix  m u ltip lica tion  6 machine SpeedUp model 100MBit
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Figure 7.13: A, p , j  values for M a trix  M u ltip lica tion
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Chapter 8

Summary and Conclusions

Following the investigation into parallel computing by means of a variable com

puter cluster conducted and presented in  th is dissertation some fina l comments 

are required. Parallel programming is much more d ifficu lt than sequential pro

gramming. Programming for good performance requires much work, especially 

in  determ ining a good parallelization. Significant amount o f labour is required 

to implement and orchestrate parallel programs and debugging such programs 

is not a tr iv ia l task. The task is d ifficu lt because of the interactions among 

m ultip le processes w ith  the ir own program orders, and because of sensitivity 

o f tim ing. Depending on when events in  one process happen to  occur relative 

to  events in  another process, a bug in  the program may or may not manifest 

itse lf at run tim e in  a particular execution.

Our research indicates tha t computer clusters are viable alternatives to 

mainframes for com putation intensive applications. Applications th a t require 

little  I/O  are especially suited for d istributed memory clusters, such as the 

one tha t has been designed. The biggest challenge posed by the developed

137
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machine was the process of mapping data onto the nodes. Ideally the data 

would be evenly distributed so tha t the whole machine participates in  the 

computations. A t the same tim e, i t  is im portant to position data “close” to 

other data it  participates into, because communication is very expensive. A t 

any rate, it  takes a fa ir amount of manual intervention and custom crafting to 

develop a code th a t can run in  parallel. Parallelism in  an application is often 

expressed serially in  a fashion th a t obscures whatever parallelism  once existed. 

Converting a sequential algorithm  to a parallel equivalent involves hard work 

and hand tuning. The system designer has to  coordinate the activities of the 

different processors explicitly, usually through message passing.

The main idea behind the conducted research was to  design and bu ild  a 

distributed computing cluster and to analyze its  performance. The emphasis 

was put on creating an open platform  th a t could be used for development of 

engineering applications requiring greater computing power than regular work

stations can deliver. Several factors influenced the design of the cluster. The 

most notable factors include u tiliza tion  of standard, off-the-shelf hardware, 

adaptation o f standard operating system and networking software, scalability 

and expendability, high performance to price ra tio , and fle x ib ility  and ease of 

configuration. By building an in itia l implementation of the d istributed com

puting cluster, hands-on experience has been acquired, which shows tha t a firs t 

phase d istributed system can be b u ilt w ith  an acceptable level of functionality. 

However, im plementing a distributed computing cluster is a challenging task. 

The obtained results show tha t this computing concept is feasible and tha t it  

can be implemented efficiently on low cost hardware. The developed variable 

cluster can be used to run engineering applications th a t require great process

ing power. Computing kernels for m atrix m ultip lication, 1-D and 2-D FFT,
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and electric fie ld calculator were designed and implemented. W hile clusters 

are b u ilt on a regular basis, little  research has been done in  the modeling of 

the ir performance. Data collected during the experiments were used to  de

velop models of the cluster while perform ing m atrix m ultip lica tion in  discrete 

and continuous domains. Accurate models were developed and compared w ith  

the collected data.

Clusters offer great performance at a low cost. The research indicates tha t 

it  is im portant to  match a problem to a machine. D istributed computing re

quires partition ing  of the problem and orchestration of the computations. I t  

was observed th a t I/O  intensive problems do not benefit from  cluster tech

nologies. A simple formula

T l / o  <-~ T F lo a tin g P o in tO p e ra tio n s

is proposed for a quick assessment o f the applicab ility of the designed cluster 

to  a given problem. Implementations where more than 50% of tim e is spent on 

I/O  do not benefit from  the designed cluster architecture. The ideal candidate 

for a cluster application has a com putational complexity of 0 (n2) or greater. 

Sample applications include: m atrix  operations (imaging operations) and grid 

operations (sim ulations).

The collected results obtained from  several applications run on the cluster 

allowed for the analysis of its performance. Data were used to  calculate system 

SpeedUp and selected sets of cases served to  develop models of the experimen

ta l system. Two cluster models, discrete and continuous, were advanced. The 

close match of the developed models w ith  our data suggests th a t the computa
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tiona l cluster may undergo damp oscillations during its operation. A lthough 

th is may not always be the case, a significant number of the experimental 

plots suggests that. An immediate conclusion to this observation is that the 

performance of the computer cluster may at times be highly dependent on the 

“response” frequency of the system when processing different com putational 

load. The model inherently signals the oscillatory properties of the cluster.

PC clusters are commonly used for conducting scientific calculations. The 

absolute performance of such clusters is not attractive compared to  massively 

parallel processors, because the performance of interconnecting networks is 

not good enough, especially w ith  communication intensive applications. How

ever, a good cost to  performance ra tio  can be achieved in  these clusters. Such 

systems are interesting as research prototypes, but none of them  has been ac

cepted as a common platform . D istributed memory parallel machines are the 

only vehicle for applying many processors to an individual problem. However, 

quite often the performance of systems employing m ultip le processors does not 

scale or increase at a satisfactory rate w ith  the number of processors available 

for computations. There are many advantages of these systems tha t can be 

custom tailored to an application. The designer is not restricted to generic 

implementations available on the market. A  custom tailored system can be 

used to process data available in  any form  and anywhere. Computations can 

also be scheduled at times when computers are idling. Since the cluster server 

is aware of a ll available cluster members, it  can assign the data and collect 

the results of computations when they become available. If fa ilure of a cluster 

member is detected, it  would be possible to reassign the failed cluster mem

ber’s data to  a member tha t has finished computations. W ith  m ultip le  cluster 

members a high degree of redundancy can be achieved. Cluster computing
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does not come w ithout a price. In order to  benefit from  the cluster’s power 

one needs to  develop programs th a t u tilize  the hardware efficiently. Frequently 

it  is d ifficu lt, and sometimes impossible, to convert a sequential program into 

a parallel equivalent. From our study it  follows tha t problems th a t require 

much communication are not well suited for a cluster implementation.

8.1 Recommendations for Future Work

The developed system performed at a satisfactory level. Several aspects could 

be improved or optim ized to increase the overall performance o f the system. 

The sections below address the most notable ones.

The cluster does not u tilize  the cluster server during computations. The 

prim ary role of the server, aside from  cluster management and task allocation, 

was to record accurate measurements of execution times during experiments. 

The server of course could be utilized to perform computations on a set of 

data. The communications w ith  the cluster members would be reduced and 

the overall performance would certainly increase.

The I/O  operations are synchronous. The computation is not started un

less a ll data are received. Since the data on which the computations are 

performed are stored in  consecutive memory locations, it  would be possible to 

start computations as soon as a set of data is received. In  addition, the par

tia lly  computed results could be sent to  the server as soon as they are available. 

Such optim ization would especially benefit the 2D-FFT application, where a 

large portion of the execution tim e is devoted to I/O .
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The experiment illustrated the applicability of a distributed computing 

cluster to  perform  computations of the selected engineering application. Very 

little  optim ization has been performed. The prim ary concern was the correct

ness o f the results. I t  would be possible to  tune the code, especially when it  

comes to memory references during matrix m ultip lica tion  operation. M u lti

threaded routines could also be added for computations and the overlapped 

I/O , as discussed above.

Basic fa u lt tolerance has been implemented in  the experimental system. 

The server is capable of recognizing a crashed cluster member. When such 

a problem is detected, the server continues to  run and collects results of the 

com putation from  the running cluster members. The server then notifies the 

operator about the cluster member tha t failed and the problem can be ad

dressed by the operator. However, such failures cause the whole computation 

to  fa il, as there are no results from the machine to which the com putation was 

assigned. A  possible improvement would involve an assignment of the data 

belonging to  the fau lty cluster member to  the firs t cluster member to finish 

its  assigned computations.

Cluster management tasks, such as cluster member registration and com

putational power assessment, are performed manually. The operator must also 

know how many cluster members w ill participate in the experiment/ calculations 

before he/she schedules any computations on the cluster. Such tasks could be 

automated. C luster members could be added and removed dynam ically to 

and from  a database maintained by the server. Machines w illing  to partic

ipate in  the cluster could be given a pre-registration assessment test whose 

results would be used to rank the com putational power o f the participant. By
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the same token, the removal of cluster members could be automated. For ex

ample, any failure detected during computations would cause de-registration 

of the cluster member.
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A ppendix A

Cluster Program Listings

The cluster code consists of three parts. The firs t part contains lib ra ry  func

tions utilized by both the server and cluster member. The second part con

tains the client code and fina lly  the th ird  part contains the server code. For 

the sake of brevity only the 2D-FFT code for the server and the members has 

been included in  th is appendix. The code for latency, datatrasfer and m atrix  

m ultip lica tion  is very sim ilar to the one listed below.

A .l C luster L ibraries

In  order to sim plify the development of the cluster server and the cluster meme- 

bers several auxiliary libraries have been implemented. The lib ra ry  functions 

are responsible for handling socket communications, m atrix  operations and 

database connectivity.

144
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A .1.1 Socket L ibrary

socket.c

# in c lu d e  < s td io .h >

#in c lu d e  < sy s /ty p e s ,h >

# in c lu d e  < sy s /so c k e t.h >

# in c lu d e  < n e t in e t / in .h >

# in c lu d e  <netdb.h>

i n t  r e a d b u f f e r (  i n t  s o c k e t,  v o id  * b u f f e r ,  i n t  b y te s  ) ;  

i n t  w r i te b u f f e r (  i n t  s o c k e t,  v o id  * b u f f e r ,  i n t  b y te s  ) ;

/ /  D efine  an I n t e r n e t  a d d re ss  g iv en  a h o s t  and p o r t .  

se tad d rC sp , h o s t ,  p o r t )  

s t r u c t  so ck ad d r_ in  *sp; 

ch ar * h o st; 

i n t  p o r t ;

{
s t r u c t  h o s te n t  *hp;

hp = g e th o s tb y n a m e (h o s t) ; /*  se a rc h e s  / e t c /h o s t s  * / 

i f  (hp == NULL) {

f p r i n t f  ( s t d e r r ,  " '/,s: unknown h o s t \n "  , h o s t ) ;  

e x i t ( l ) ; }  

sp -> s in _ fam ily  = AF.INET;

bcopy(hp-> h_addr, & sp-> sin_addr, h p -> h _ le n g th ) ; 

sp -> s in _ p o rt = h to n s ( p o r t ) ;

>

/ /  C rea te  a  s tream  so c k e t and b in d  i t  to  th e  g iv en  p o r t  number, 

i n t  s t re a m s o c k e t( in t  p o r t )

i n t  s ;

s t r u c t  3ockaddr_ in  s in ;  

s i n . s in _  fam ily  = AF.INET;

s in . s in .a d d r .s _ a d d r  = INADDR_ANY; /*  sh o rth an d  f o r  ‘t h i s  h o s t ’ * /  

/*  h to n sO  c o n v e rts  th e  p o r t  number to  netw ork  b y te  o rd e r  * /  

s in .s in _ p o r t  = h to n s ( p o r t ) ;  

s = s o c k e t(AF_INET, SOCK_STREAM, 0 ) ; 

i f  (s  < 0 )

e r r o r ( " s o c k e t " ) ;
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i f  (b in d ( s ,  & sin , s iz e o f  s in )  < 0) 

e r r o r ( " b in d " ) ; 

r e tu r n  s ;

>

I I  System c a l l  f a i l e d :  p r i n t  a message and g iv e  up. 

e r r o r ( c h a r  *m sg;)

{
e x te rn  c h a r *myname; /*  program  name * /

f p r i n t f ( s t d e r r ,  "”/,s: " , myname); 

p e r ro r (m s g ) ; 

e x i t ( l )  ;

>

I I  F u n c tio n  re a d b u f fe r  e n su re s  t h a t  th e  e n t i r e  ex p ec ted  d a ta  h as been  re a d  

i n t  r e a d b u f f e r ( i n t  so c k e t,  v o id  * b u f f e r ,  i n t  b y te s  )

{
i n t  count=0; 

i n t  b r ;

w h ile  (co u n t < b y te s )  { /*  loop  u n t i l  f u l l  b u f f e r  * / 

i f  ( ( b r  = re a d (so c k e t  .b u f f e r ,  b y te s -c o u n t) )  > 0) { 

count += b r ;  / *  in crem en t b y te  c o u n te r *1 

b u f f e r  += b r ;  I *  move b u f f e r  p t r  f o r  n e x t re a d  *1

>
i f  (b r  < 0) I *  s ig n a l  an e r r o r  to  th e  c a l l e r  *1 

r e t u m ( - l )  ;

>
r e tu m ( c o u n t ) ;

}

I I  F u n c tio n  re a d b u f fe r  e n su re s  t h a t  th e  e n t i r e  e x p ec ted  d a ta  has been  s e n t  

i n t  v r i t e b u f f e r (  i n t  s o c k e t , v o id  * b u f f e r ,  i n t  b y te s  )

{
i n t  co un t= 0 ;

in t  b r ;

w h ile  (coun t < b y te s )  { /*  loop  u n t i l  f u l l  b u f f e r  * / 

i f  ( ( b r  = w r i te ( s o c k e t  .b u f f e r ,  b y te s -c o u n t) )  > 0) {
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count +“  b r ;  /*  increm ent b y te  c o u n te r  * /  

b u f f e r  += b r ;  /*  move b u f f e r  p t r  f o r  n e x t re a d  * /

}
i f  (b r  < 0) /*  s ig n a l  an e r r o r  to  th e  c a l l e r  * / 

r e t u m ( - l )  ;

}
r e tu r n ( c o u n t ) ;

>

A .1.2 D a ta b a se  Library

sqllib.h

# d e f in e  HSGSIZ 1 

# d e f in e  BUFFER 1024 

# in c lu d e  < s td io .h >

# in c lu d e  < a td l ib .h >

# in c lu d e  <m ysql/m ysql. h>

v o id  e x ite r rC  i n t  e x itc o d e  ) ;  / /  MySQL e r r o r  h a n d lin g  fu n c tio n

i n t  OpenDBC c h a r  *DB ) ;  I I  Open D atabase  DB

i n t  CloseDBO; I I  C lose Open D atabase

i n t  C re a teT a b le (  char *name ) ;  I I  C rea te  T ab le  name

i n t  In se rtD ataC  ch ar * ta b le ,  i n t  CPU, i n t  E th e r ,  f l o a t  D ata , f l o a t  Time, f l o a t  CPUTime, f l o a t  lOTime 

i n t  ShowTable( c h a r * t a b l e ) ;  / /  Show Table t a b le

MYSQL m ysql;

MYSQL.RES * re s ;

MYSQL_R0W row;

sqllib.c

# in c lu d e  " s q l l i b . h 11

I I  C re a te  a  t a b l e  f o r  an experim ent i n  th e  re s e a rc h  d a ta b ase  

i n t  C reateT ableC  ch ar *name )

{
c h a r s q lS t r  [1024] ; 

ch a r d e f i n i t i o n [1000];
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strcpy(sq lS tr,"C R E A T E  TABLE " ) ;  

s t r c a t ( s q l S t r ,  name);

s t r c a t ( s q l S t r , " \n  (ExpID INT NOT NULL AUTO_INCREMENT, \ n " ) ;  

s t r c a t ( s q l S t r ,  "Date TIMESTAMP(1 4 ) , \ n " ) ; 

s t r e e t ( s q l S t r ,  "HostCPU INT NOT NULL.Nn"); 

s t r c a t ( s q l S t r ,  "E th e rn e t INT NOT N U LL,\n"); 

s t r c a t ( s q l S t r , "D ataSet FLOAT (1 0 ,2 ) NOT NULL,\n"); 

s t r c a t ( s q l S t r ,  "RunTime FLOAT (6 ,2 )  NOT NU LL,\n"); 

s t r c a t ( s q l S t r ,  "CPUTime FLOAT (6 ,2 )  NOT NU LL,\n"); 

s t r c a t ( s q l S t r ,  "IOTime FLOAT (6 ,2 ) NOT N U LL,\n"); 

s t r c a t ( s q l S t r ,  "PRIMARY KEY (ExpID)) \ n " ) ;

i f  (m y sq l.q u ery (to n y sq l, s q l S t r ) ) 

e x i t e r r (3 );

r e tu r n  0;

>
I I  P r i n t  an SQL e r r o r  code 

v o id  e x i t e r r ( i n t  e x itc o d e  )

■C
f p r i n t f (  s t d e r r ,  " ’/ ,s \n " , raysql_error(& m ysql) ) ;  

e x i t  ( e x i tc o d e ) ;

y

I I  I n s e r t  a  re c o rd  in to  a  g iv en  ta b le

i n t  In s e r tD a ta (  char * ta b le ,  i n t  HostCPU, i n t  E th e rn e t ,  f l o a t  D a taS et, f l o a t  RunTime, f l o a t  CPUTime, f l o a t  IOTime )

ch ar s q l S t r [1024]; 

ch ar v a lu e s [1000] ;

s p r i n t f ( s q l S t r , "!4s%s", "INSERT INTO ", t a b l e ) ;

s t r c a t ( s q l S t r ,  " (  HostCPU, E th e r n e t , D a ta S e t, RunTime, CPUTime, IOTime ) \ n " ) ;

s p r i n t f  (v a lu e s , "VALUES C/,d, ”/,d, I f ,  */,f, '/,f, '/.f ) " ,  HostCPU, E th e rn e t ,  D a taS e t, RunTime, CPUTime, IOTime); 

s t r c a t ( s q l S t r ,  v a lu e s ) ;

i f  (m ysql.query(fem ysql, s q l S t r ) ) 

e x i t e r r (3 ) ;

r e tu r n  0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

A p p e n d i x  A . C l u s t e r  P r o g r a m  L is t in g s

>

I I  Show a l l  r e c o rd s  in  a  g iv en  ta b le  

i n t  ShowTable( ch ar s t a b le  )

{
c h a r s q lS t r  [1024] ; 

i n t  i ;

s p r i n t f  ( s q lS t r ,  ""/,s'/.s", "SELECT * FROM ", t a b l e )  ;

i f  (m ysql.query(fcm ysql, s q lS t r ) )  

e x i t e r r ( 3 ) ; 

i f  ( ! ( r e s  = m y sq l_ s to re _ re su lt( f tm y sq l)) )  

e x i t e r r (4 );

w h ile ( (  row = m y s q l_ fe tc h _ ro v (re s ) ) )

I
f o r  (i= 0 ; i< m y sq l_ n u m _ fie ld s (re s ) ; i++) 

p r in tf ( " % s  ", ro w [i]  ) ; 

p r i n t f ( " \ n " ) ;

}

i f  ( !m y sq l_ eo f(re s ))  

e x i t e r r ( 5 ) ;

m y s q l_ f r e e _ r e s u l t ( r e s ) ; 

r e tu r n  0;

>

I I  Open a d a ta b ase  

i n t  0penDB( ch ar * DB )

{
i f  ( ! (m y sq l_ co n n ect(tan y sq l,"asu s2 p 3 " , " r o o t" , " " ) )  ) 

e x i t e r r ( l ) ; 

i f  (m ysql_select_db(& m ysql, DB)) 

e x i t e r r ( 2 ) ;

>

I I  C lose a d a tab ase  

i n t  CloseDBO
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m ysq l_close  (& m ysql); 

r e tu r n  0;

>

A .1.3 S y stem  Library

system.c

# in c lu d e  < s td io .h >

i n t  getC PU Info( f l o a t  * ) ;

i n t  getSw aps( i n t  *sw apout, i n t  *sw ap in );

i n t  g e tC P U In fo (flo a t *mhz)

{
FILE * p r o c f i le ;  

char b u f f e r [80];

*mhz = -1 ;

p r o c f i l e  = f o p e n (" /p ro c /c p u in fo " , " r" )  ; 

i f ( p r o c f i l e  == HULL ) 

r e t u r n ( - l ) ;

w h i le ( f g e ts ( b u f f e r ,  80, p r o c f i l e ) )

i f  ( s trn c m p (b u f fe r , "cpu MHz” , 7)==0){ 

ss c a n f  (Scbuffer [1 1 ], ”'/,f " , mhz) ; 

b r e a k ;} 

f c l o s e ( p r o c f i l e ) ; 

r e t u r n (0 ) ;

>

i n t  getSw aps( i n t  *sw apout, i n t  *swapin)

{
FILE * p r o c f i le ;

ch ar b u f f e r [8 0 ], tem p[80];

♦swapout = *sw apin = -1 ; 

p r o c f i l e  = f o p e n ( " /p r o c / s t a t " , ”r " ) ; 

i f ( p r o c f i l e  == NULL )
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r e t u r n ( - 1) ;

w h i le ( f g e ts ( b u f f e r ,  80, p r o c f i l e ) )  

i f  ( s tm c m p (b u f fe r , "swap", 4)==0){

ss c a n f  ( b u f f e r ,  " '/.s */,d '/,d", tem p, sw apin, sw ap o u t); 

b re a k ;}  

f c lo s e ( p r o c f i l e )  ; 

r e tu m ( O ) ;

}

A .1.4 M a tr ix  Library  

arrayops.h

# in c lu d e  < s td io .h >

S in c lu d e  < s td l ib .h >

#in c lu d e  < sy s /tim e .h >

v o id  P r in tM a tr ix  ( f l o a t  *M, i n t  a , i n t  b ) ;

v o id  CreateRandom M atrix ( f l o a t  *M, i n t  a , i n t  b ) ;

v o id  C re a te ld e n ti ty M a tr ix  ( f l o a t  *M, i n t  a , i n t  b ) ;

v o id  C reateO nesM atrix  ( f l o a t  *M, i n t  a , i n t  b ) ;

v o id  R o ta te M a trix  ( f l o a t  *M, i n t  row s, i n t  c o ls ) ;

v o id  P r in tM a tr ix  ( f l o a t  *M, i n t  a , i n t  b ) ;

i n t  CompareM atrix ( f l o a t  *M1, f l o a t  *M2, i n t  a ,  i n t  b ) ;

i n t  P o p u la teM atrix  ( f l o a t  *M1, f l o a t  *M2, i n t  a , i n t  b ) ;

i n t  M u lt ip ly M a tr ix ( f lo a t  * , i n t ,  i n t ,  f l o a t  *, i n t ,  i n t ,  f l o a t  * ) ;

i n t  GetRows( f l o a t  *Source, i n t  SRows, i n t  SC ols, i n t  StartR ow , i n t  EndRow, f l o a t  * D e s t) ;

i n t  G etC ols( f l o a t  *Source, i n t  SRows, i n t  SC ols, i n t  S ta r tC o l ,  i n t  EndCol, f l o a t  * D e s t) ;

v o id  S o r tM a tr ix ( f l o a t  *M, i n t  rows, i n t  c o l s ) ; 

f l o a t  ExpTime( s t r u c t  t im e v a l, s t r u c t  tim e v a l ) ;

arrayops.c

# in c lu d e  "a rra y o p s .h "

/ /  F u n c tio n  f o r  s o r t in g  e lem en ts of a  m a trix  

v o id  S o rtM a trix  ( f l o a t  *M, i n t  rows, i n t  c o ls )

{
i n t  c o u n t, i , j ;
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f l o a t  temp;

coun t = row s*co ls;

f o r ( i = 0 ; i< c o u n t; i++) 

f  o r (j  = i ; j  < co u n t; j  ++)

I f ( *(M+1) > *(M+j) ){  

temp = *(M +i);

*(M+i) = * (M+j) ;

*(M+j) = tem p;}

}
/ /  F u n c tio n  f o r  " r o ta t in g "  a m a tr ix ,  rows become c o ls  

v o id  R o ta teM atrix  ( f l o a t  *M, i n t  row s, i n t  c o ls )

{
f l o a t  *temp;

i n t  o f f s e t ,  row count, c o lc o u n t ,n ,i= 0 ;

i f ( (temp -  ( f l o a t  * )m a llo c ( ro w s * c o ls * s iz e o f ( f lo a t) ) )  == NULL H  

p r in tf ( " C a n n o t  a l lo c a te  mem f o r  r o t a t i n g  m a tr ix " ) ;  

e x i t ( - l )  ;}

fo r(c o lc o u n t= 0 ; c o lc o u n t< c o ls ; co lcoun t+ + ){  

o f f s e t  = c o ls * ( ro w s - l)  + c o lc o u n t; 

fo r(ro w co u n t= 0 ; rowcount <rows; row count++){

*(tem p+i++) = * (H + o ffs e t) ; 

o f f s e t  -= c o ls ;}

}
n = row s*co ls;

fo r ( i= 0 ; i< n ; i+ + )

*(H+i) = * ( tem p + i) ;

f r e e ( te m p ) ;

}
/ /  F u n c tio n  o f p r in t i n g  e lem en ts o f a  m a tr ix  in  a  human re ad a b le  form 

v o id  P r in tM a tr ix  ( f l o a t  *M, i n t  a , i n t  b)

{
i n t  i , j ;

f o r (  i= 0 ;i< a ;i+ +  ){  

f o r ( j= 0 ;j< b ;j+ +  )

p r i n t f  ( “•/..2 f ” , *(M + (i*b+ j))) ; 

p r i n t f ( " \ n " ) ;
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>
>
/ /  F u n c tio n  f o r  m u lt ip ly in g  two a r b i t r a r i l y  s iz e d  m a tr ic e s ,  no e r r o r  checks

i n t  M u lt ip ly M a tr ix ( f lo a t  *a , i n t  aRow, i n t  aC ol, f l o a t  *b, i n t  bRow, i n t  bC ol, f l o a t  *c)

i n t  x , y , z ;

f  o r (z = 0 ; z<aRow; z++){  

fo r(y « 0 ;y < b C o l;y + + ){

* (c+ (z*bC ol+ y))=0; 

f  o r(x = 0 ; x<aC ol; x++)

* (c+(z*bC ol+y)) += *(a+(z*aC ol+ x)) * * (b+(x*bC ol+y)) ;

}
}
r e tu r n  z*y*x;

}
I I  F u n c tio n  f o r  p o p u la t in g  a m a tr ix  w ith  random d a ta  

v o id  CreateRandom M atrix ( f l o a t  *M, i n t  a , i n t  b)

{
i n t  i ,  number;

number = a*b; 

srand(tim e(N U LL)) ;

f  o r ( i= 0 ; i<num ber; i  ++)

*(M+i) = ra n d O ;

}
/ /  F u n c tio n  f o r  p o p u la t in g  a m a tr ix  w ith  l ’s 

v o id  C reateO nesM atrix  ( f l o a t  *M, i n t  a , i n t  b)

{
i n t  i ,  number; 

number = a*b;

f  o r ( i= 0 ; i<num ber;i++)

*(M+i) = 1 .0 ;

}
/ /  F u n c tio n  f o r  c r e a t in g  an I d e n t i t y  m a trix  

v o id  C re a te ld e n ti ty M a tr ix  ( f l o a t  »M, i n t  a , i n t  b)

{
i n t  i ,  number, o f f s e t ;
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number = a*b; 

o f f s e t  = a+1;

*M = 1;

f o r (1=1; K num ber; i++) 

i f ( i= = o f f s e t )

*(M+i) = 1; o f f s e t  += a+1; 

e l s e

*(M +i)=0;

}
/ /  F u n c tio n  f o r  com paring th e  c o n te n ts  o f two m a tr ic e s  

i n t  Com pareM atrix ( f l o a t  *H1, f l o a t  *M2, i n t  a , i n t  b)

I
i n t  i ,  co u n t;

count = a*b; 

f o r ( i = 0 ; i< c o u n t; i++) 

i f (* (M l+ i)  != *(M 2+i)) 

r e tu r n  -1 ; 

r e tu r n  0;

I I  F u n c tio n  f o r  copying a  m a trix

i n t  P o p u la te M a trix  ( f l o a t  *M1, f l o a t  *M2, i n t  a ,  i n t  b)

{
i n t  i ,  n; 

n  = a*b;

f  o r ( i= 0 ; i< n ; i++)

*(M l+ i) = * (H 2+ i); 

r e tu r n  n ;

}
/ /F u n c t io n  GetRows a s s ig n s  rows of d a ta  from m a tr ix  sou rce  to  m a tr ix  d e s t  

/ / I t  r e tu r n s  number o f assig m en ts  perform ed

i n t  GetRows( f l o a t  *Source, i n t  SRows, i n t  SC ols, i n t  S tartR ow , i n t  EndRow, f l o a t  *Dest)

i n t  o f f s e t ,  c o u n te r , end;

o f f s e t  = St artRow *SCols; 

end = EndRow+SCols + SCols;
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f o r (  c o u n te r = o f f s e t ; counter<end; c o u n te r+ t )

* (D est + ( c o u n te r - o f f s e t ) )  = * (Source + c o u n te r ) ;  

r e tu r n  ( c o u n te r - o f f s e t ) ;

}
/ /F u n c t io n  GetCols a s s ig n s  columns of d a ta  from  m a tr ix  so u rce  to  m a tr ix  d e s t 

/ / I t  r e tu r n s  number o f assig m en ts  perform ed

i n t  G e tC o ls( f l o a t  *Source, i n t  SRows, i n t  SC ols, i n t  S ta r tC o l ,  i n t  EndCol, f l o a t  *Dest) 

{
i n t  o f f s e t ,  O ffC ounter, E lC o u n te r, endE lC o u n ter; 

i n t  d e s tc o u n t = 0; 

f l o a t  t ;

endE lC ounter = EndCol -  S ta r tC o l;  

o f f s e t  = 0;

f o r (  O ffC ounter = 0; O ffC ounter < SRows; OffCounter++ ){ 

o f f s e t  = S ta r tC o l + SCols * O ffC ounter;

f o r ( E lC oun ter = 0; E lC ounter <= endE lC ounter; ElCounter++ ) 

t  = * (D est + d estcoun t+ + ) = *(Source + ( o f f s e t  + E lC o u n te r)) ;

}
r e tu r n  d e s tc o u n t;

>
/ /  F u n c tio n  ExpTime r e tu r n s  e x p ire d  tim e betw een s t a r t t v  and en d tv  e v en ts  

f l o a t  ExpTime( s t r u c t  tim e v a l s t a r t t v ,  s t r u c t  t im e v a l e n d tv  )

f l o a t  ETime=0; 

f l o a t  f ra c t io n = 0 ;

ETime = e n d tv .tv _ s e c  -  s t a r t t v . t v _ s e c ;  

f r a c t i o n  = e n d tv .tv _ u se c  -  s t a r t t v . t v _ u s e c ; 

f r a c t i o n  /=  1000000;

i f  ( f r a c t io n  < OH

f r a c t io n  = - f r a c t io n ;

ETime = ETime -  1 + f r a c t io n ;

}
e ls e

ETime = ETime + f r a c t io n ;  

r e tu r n  (ETim e);

}
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A.2 2D-FFT Code

A .2.1  Server

c lu s te rs e rv e r.c

/ *

* c lu s te r s e r v e r  p o r t

*  C lu s te r  S e rv e r.

* CS g e n e ra te s  d a ta  and sends i t  to  c lu s te rae m b ers  f o r  com puta tions.

* CS c o l l e c t s  th e  r e s u l t s  and re c o rd s  th e  e x e c u tio n  tim e in  DB.

* A ssum ption: a l l  c lu s te r  memebers have th e  same computing power. 

* /

# in c lu d e  < s td io .h >

# in c lu d e  < sy s /ty p e s .h >

# in c lu d e  < sy s /so c k e t.h >  

t in c lu d e  <net i n e t / i n .h>

# in c lu d e  < sy s/tim e .h >

#in c lu d e  < u n is td .h >

# in c lu d e  < ctype.h>

# in c lu d e  < p th read .h>

# in c lu d e  < s ig n a l .h>

# in c lu d e  "a r ra y o p s .h "

# in c lu d e  " s q l l ib .h "

S d e fin e  REPETITIOUS 10 

# d e f in e  STARTSIZE 128 

# d e f in e  ENDSIZE 4096

i n t  MAXMEMBERS; 

c h a r *myname, * p o r t ;

v o id  *computeMM(void * a rg ) ; / /  Thread fu n c tio n

i n t  Com puteFFT(float * m a tr ix , i n t  s i z e ,  f l o a t  * t im e S ta t s ) ;

v o id  s ig n a l_ h a n d le r ( i n t  s ig n a l ) ;

ty p e d e f  s t r u c t !

i n t  so c k e t; / /  d e s t in a t io n  so ck e t
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f l o a t  *m atrix ; 

i n t  a rrd im s [2] ;

/ /  s t a r t  a d d re ss  o f d a ta  m a trix  

/ /  AX, AY

f l o a t  v o l a t i l e  * r e s u l t ; / /  s t a r t  a d d re ss  o f th e  r e s u l t  m a trix  

p th read _ m u tex _ t * lo ck ; / /  lo ck  f o r  lo c k in g  th e  a cc ess  to  t im e S ta ts

f l o a t  v o l a t i l e  * t im e S ta ts ;  / /  10, CPU

i n t  th read ID ; 

} th rea d D a ta ;

/ /  Thread ID

i n t  * s; / /  Conimunication so c k e t v a r ia b le s ,  a l lo c a te d  d y n am ically

s t r u c t  so ck ad d r_ in  * s i n t ;

c h a r *cmName[4] = I"cm 4", "cm3", “cm2", "cm l"}; //C om puter names o f c lu s t e r  members

p th re a d _ t  * cmThread; / /T h re a d  v a r ia b le s  

th re a d D a ta  * cmData; 

p th read_m utex_ t lo c k ;

m a in (a rg c , argv) 

ch a r *a rg v [] ;

i n t  a r rd im s [2 ];

i n t  n , z e ro , r v a l ,  c o u n te r ,  membercount, o f f s e t ,  r e p e a t;

s t r u c t  t im e v a l s t a r t t v ,  e n d tv ;

s t r u c t  tim ezone t z ;

ch ar ta b le  [80] ;

f l o a t  *m atrix ;

f l o a t  expTime[REPETITIONS], expTimeAve; 

f l o a t  * t im e S ta t ,  lOTimeAve, CPUTimeAve;

signal(S IG PIP E , s ig n a l_ h a n d le r ) ; / /  Try to  c a tc h  CM f a u l t  s ig n a ls  

myname = a rg v [0 ]; 

i f  (a rg c  < 3) {

f p r i n t f  ( s t d e r r , "usage; '/,s  p o r t  members [ ta b le ] \n "  , myname) ; 

e x i t ( l ) ;} 

p o r t  = argv [1 ];

MAXMEMBERS = a to i ( a r g v [ 2 ] ) ;

i f  (MAXMEMBERS > 0 && MAXMEMBERS < 5){  

fo r (n = 0 ;n<MAXMEMBERS;n++)
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p r i n t f  (" ’/.s  " , cmNarne [n] ) ; 

p r in tf ( " m a c h in e s  t h a t  w i l l  p a r t i c i p a t e  in  th e  e x p e r im e n t\n " ) ;}  

e ls e {

p r in t f ( " C u r r e n t ly  o n ly  1 t o  4 m achines can p a r t i c i p a t e  in  th e  e x p e rim e n t\n " ) ;  

e x i t ( - ! ) ; >

s = ( i n t  *) calloc(MAXMEMBERS, s i z e o f ( i n t ) ) ;  / /  I n i t i a l i z e  Communication so c k e ts  

i f  (s  == NULLH

f p r in t f ( s td e r r ," C a n n o t  a l lo c a te  memory f o r  com m unication s o c k e ts ! " ) ;  

e x i t (2 );>

s i n t  = ( s t r u c t  so ck ad d r_ in  *) calloc(MAXMEMBERS, s i z e o f ( s t r u c t  s o c k a d d r_ in ) ) ; 

i f  ( s i n t  == NULLH 

f p r in t f ( s td e r r ," C a n n o t  a l l o c a t e  memory f o r  com m unication s t r u c t s ! " ) ;  

e x i t (2 ) ;}

t im e S ta t  = ( f l o a t  *) m alloc(2*R E PE T IT ID N S*sizeof(float)) ;  

i f  ( t im e S ta t  == NULLH

f p r i n t f ( s t d e r r , "Cannot a l lo c a te  memory f o r  tim e s t a t s ! " ) ;  

e x i t ( 2 ) ;}

cmThread = (p th re a d _ t  * )calloc(MAXMEMBERS, s i z e o f ( p t h r e a d . t ) ) ; 

i f  (cm lhread  == NULLH

f p r in t f ( s td e r r ," C a n n o t  a l lo c a te  memory f o r  t h r e a d s ! " ) ;  

e x i t ( 2 ) ;}

cmData = (th rea d D a ta  * ) calloc(MAXMEMBERS, s iz e o f ( th re a d D a ta ) ) ;  

if(cm D ata  - -  NULLH

f p r i n t f ( s t d e r r , "Cannot a l l o c a t e  memory f o r  th re a d  d a ta " ) ;  

e x i t ( 2 ) ;}  

i f  (a rg c  == 4 ){

OpenDB( " re se a rc h "  ) ;  

s t r c p y  ( t a b l e , a rgv  [3] ) ;

p r i n t f  ("R e su lts  w i l l  be s to re d  in  r e s e a r c h . ‘/,s t a b le  A n " , t a b l e )  ;

C re a teT a b le ( ta b le  ) ;  } 

e ls e

p r in t f ( " R e s u l t s  w i l l  n o t be reco rd ed N n ");

f o r ( c o u n te r  = STARTSIZE;counter<=ENDSIZE;counter = co u n te r* 2 ){

f o r  ( re p e a t  = 0;repeat<REPETITI0NS; re p e a t+ + H

* ( tim e S ta t + 2 * re p e a t)  = * ( tim e S ta t + 2 * rep ea t +1) = 0; 

a r rd im s [0] = a r rd im s [1] = co u n te r;

m a tr ix  = ( f l o a t  *) m a llo c (a r rd im s [0 ]* a r rd im s [1 ]* s i z e o f ( f l o a t ) ) ;  

C rea teO n esM atrix (m atrix , a r rd im s [0 ] , a r rd im s [1 ] ) ;

g e tt im e o fd a y (& s ta r ttv ,  & tz ) ;
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Com puteFFT(m atrix, c o u n te r , ( t im e S ta t + 2 * re p e a t) ) ;

R o ta te M a tr ix (m a tr ix , a r rd im s [0 ] , a r rd im s [ 1 ] ) ;

Com puteFFT(m atrix, c o u n te r , ( t im e S ta t  + 2 * re p e a t) ) ;  

g e ttim eo fd ay (& en d tv , & tz ) ;

* ( t im e S ta t  + 2 * re p ea t)  /=  MAXMEMBERS; //N o rm a liz e  S ta ts  

* ( t im e S ta t  + 2 * re p e a t+ l)  /=  MAXMEMBERS;

/ /  C o rre c tn es  check. Elem ent 0 ,0  sh o u ld  be " A*B

p r i n t f  ("M[0] [0] : f,i Should be c lo s e  to :  '/ ,f \n " ,* m a tr ix , ( f l o a t ) a r r d im s [0 ]* a rrd im s[1 ]) ; 

f r e e  (m a tr ix ) ;  / /  f r e e  memory f o r  n e x t round  of com putations 

ex p T im e[repea t] “  ExpTime( s t a r t t v ,  en d tv  ) ;

p r i n t f  ("Run: */,d Time: */,.2f CPU */,.2f 10: "/,. 2 f \n "  , r e p e a t+ l ,  expTime [ re p e a t]  , * ( tim e S ta t+ 2 * re p e a t+ l)  ,

* ( t im e S ta t+ 2 * re p e a t) ) ;

>
SortM atrix (expT im e, 1, REPETITIONS);

P rin tM a trix (ex p T im e , 1, REPETITIONS);

R o ta te M a tr ix ( tim e S ta t ,  REPETITIONS, 2 );

S o r tM a tr ix ( t im e S ta t , 1, REPETITIONS);

SortM atrix((tim eStat+R EPETITIO N S), 1, REPETITIONS);

P r in tM a tr ix ( t im e S ta t ,  2 , REPETITIONS); 

expTimeAve = IOTimeAve = CPUTimeAve = 0; 

for(n=l;n<R E PE T ITI0N S-l;n++){ 

expTimeAve += expTim e[n];

IOTimeAve += * ( t im e S ta t + n ) ;

CPUTimeAve += * ( t im e S ta t  + REPETITIONS + n  ) ;}  

if(REPETITI0NS>2){

expTimeAve /=  (REPETITIONS-2);

IOTimeAve /=  (REPETITIONS-2);

CPUTimeAve /=  (REPETITIONS-2);> 

i f ( a r g c  == 4) / /  re c o rd  r e s u l t  in  db i f  r e q u ir e d

I n s e r tD a ta (  t a b l e ,  120, 10, ( f l o a t ) a r r d im s [0 ]* a rrd im s[1 ]* s i z e o f ( f l o a t ) , expTimeAve, CPUTimeAve, IOTimeAve); 

p r i n t f  ("A verage Time e x p ire d : '/,. 2 f CPU: '/,. 2f 10: ’/,. 2f \n "  , expTimeAve, CPUTimeAve, IOTimeAve);} 

i f ( a r g c  == 4 )1  / /  Show r e s u l t s  re co rd e d  in  db 

S h o w T a b le (tab le );

CloseDBO ;}  

e x i t ( 0 ) ;

}

v o id  *computeMM(void *arg)

{
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th re a d D a ta  t d  = * (th rea d D a ta  *) a rg ; 

f l o a t  t im e S ta t s [ 3 ] ; / /te m p  b u f f e r  f o r  s t a t s

i f  ( w r i t e b u f f e r ( td . s o c k e t , t d . a r rd im s , s i z e o f ( td .a r r d im s ) ) < 0) 

e r r o r ( " w r i t i n g  a r ra y  d im m ensions"); 

td .a r r d im s [0] = t d .a r r d im s [1] = 0;

i f  ( r e a d b u f f e r ( td .s o c k e t ,  td .a r r d im s ,  s i z e o f ( td .a r r d im s ) )  < 0) 

e r ro r ( " r e a d in g  a rrd im s c o n f irm a t io n " ) ; 

i f  ( w r i t e b u f f e r ( td . s o c k e t , t d .m a t r ix ,  td .a r r d im s [0 ]* td .a r rd im s [1 ]* s i z e o f ( f l o a t ) )  < 0) 

e r r o r ( " w r i t i n g  f i r s t  a r ra y " ) ;  

i f  ( r e a d b u f f e r ( td .s o c k e t ,  t d . r e s u l t ,  t d .a r r d im s [0 ]* td .a r rd im s [1 ]* s i z e o f ( f lo a t ) )  < 0) 

e r ro r ( " r e a d in g  r e s u l t  a r ra y " ) ;  

i f  ( r e a d b u f f e r ( td . s o c k e t , t im e S ta ts ,  s i z e o f ( t im e S ta t s ) )  < 0) 

e r ro r ( " r e a d in g  tim e s t a t s " ) ;  

p th re a d _ m u te x _ lo c k ( td .lo c k ) ; / /  o b ta in  lo c k  f o r  sh a red  d a ta  

* ( td .  t im e S ta ts )  += t im e S ta ts  [0] + t im e S ta ts  [1] ; / /  10 in  p lu s  10 ou t 

* ( td . t im e S ta t s + l )  += t im e S ta t s [2 ]; / /  CPU Time

p th re a d _ m u te x _ u n lo c k ( td .lo c k ) ; / / r e l e a s e  lo ck

p r i n t f  ( " [’/,d ] F in ish e d , CPU: '/ ,.2 f , 10: ’/,. 2 f \ n " , t d . th re a d ID , * ( t d . tim e S ta ts+ 1 ) , * ( t d . t im e S ta ts )  ) ;

>

i n t  Com puteFFT(float * m a tr ix , i n t  s i z e ,  f l o a t  * tim e S ta ts )

in t  membercount, o f f s e t  = 0;

p r i n t f  ("C onnecting  on p o r t  ’/ ,s \n " ,  p o r t ) ;

for(m em bercount = 0; membercount<MAXMEMBERS; membercount++){ 

s[m embercount] = s tre a m so c k e t(0 ) ;  /*  p o r t  0 means "any p o r t"  * /  

se tad d r(& sin t[m em b erco u n t], cmName[membercount], a to i ( p o r t ) ) ;

/*  connect a  so ck e t u s in g  p o r t  s p e c if i e d  by th e  command l in e  * / 

i f  (con n ec t(s[m em b erco u n t], ksin t[m em b erco u n t], s iz e o f(s in t[m e m b e rc o u n t] ) )  < 0) { 

e r r o r ( “co n n ec tin g  stream  s o c k e t" ) ;  

e x i t ( l ) ;}

p r i n t f  ( " O ffs e t :  '/,d \n", o f f s e t ) ;  

cmData[m embercount]. so ck e t = s[m em bercount]; 

cm D ata[m em bercount].m atrix  = (m a trix  + o f f s e t ) ;  

if(m em bercount != (MAXMEMBERS-1))

cmData[m embercount]. a r rd im s [0] = size/MAXMEMBERS; 

e ls e
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cm D ata[m em bercount]. a rrd im s [0] = s i z e  -  (size/MAXMEMBERS)* (MAXMEMBERS-1);

cmData [m em bercount]. a r rd im s [1] = s iz e ;  

cmData [m em b erc o u n t] .re su lt = (m a trix  + o f f s e t ) ;  

cm D ata[m em bercount].lock = ftlock; 

cm D ata[m em bercount]. t im e S ta ts  = t im e S ta ts ;  

cm D ata[m em bercount].threadID  = membercount;

p th r e a d _ c r e a te ( fecmThread[membercount],

NULL,

computeMM,

&cmData[membercount] ) ;

o f f s e t  += size*(size/MAXMEMBERS);

>
for(m em bercount = 0; membercount<MAXMEMBERS; membercount++){

p th read_ jo in (cm T hread[m em bercoun t], NULL); / /  w a it f o r  th re a d s  t o  f i n i s h  

c lo se(s [m em b erco u n t]) ;

}
r e tu r n  1;

}
v o id  s ig n a l_ h a n d le r ( in t  s ig )

{
p r in tf ( " A  com m unication e r r o r  h as o c c u r e d .\n " ) ;

>

A .2.2 C lu ster  M em ber

/ *

* FFT C lu s te r  Member

* I n te r n e t  s tre am  s e rv e r .

» R eceives v e c to r s  o f f l o a t s  and sends FFT of them

* /

# in c lu d e < s td io .h >

# in c lu d e < sy s /ty p e s ,h >

S in c lu d e < sy s /so c k e t,h >

# in c lu d e < n e t in e t / in .h >

S in c lu d e <netdb.h>

# in c lu d e < s ig n a l.h >
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# in c lu d e  " a r ra y o p s . h 11 

S d e fin e  HSGSIZ 1 

v o id  s ig n a l_ h a n d le r ( in t ) ; 

c h a r *myname;

i n t  msgs; / / s o c k e t  d e s c r ip to r

m a in (a rg c , axgv) 

c h a r *a rg v  [ ] ;

{
s t r u c t  so ck ad d r_ in  from ; 

i n t  s ,  n ,  f ro m len , r v a l ;  

i n t  a r rd im s [2 ];

f l o a t  t im e S ta ts  [3 ] ;  / /* t im e S ta t s ; 

s t r u c t  h o s te n t  *hp; 

c h a r buf[BUFSIZ]; 

f l o a t  *m atrix ;

s t r u c t  t im e v a l sta rtC om p, endComp, s t a r t I O ,  endIO; 

s t r u c t  tim ezone t z ;  

f l o a t  CPU;

i n t  sw ap O u tS ta rt, s w a p In S ta r t , swapOutEnd, swapInEnd;

myname = a rg v [0 ]; 

i f  (a rg c  < 2) {

f p r i n t f  ( s t d e r r ,  "usage: Y,s p o r t \ n " , a rg v [0] ) ; 

e x i t ( l )

s i g n a l ( SIGPIPE, s ig n a l_ h a n d le r  ) ;  / /  Try to  c a tc h  I/O  f a u l t s  

t im e S ta ts  [0] = t im e S ta ts  [1] = t im e S ta ts  [2] = 0; 

s  = s t r e a m s o c k e t ( a to i ( a r g v [1] ) ) ;  

fro m len  = s i z e o f ( f r o m ) ; 

i f  (getsocknam eC s, ftfrom, S from len)) { 

e r r o r ( " g e t t i n g  so c k e t name"); 

e x i t  (1 ) ;}

p r i n t f  ("S ocket h as p o r t  #'/,d\n" ,n to h s (fro m , s i n . p o r t ) ) ; 

l i s t e n ( s ,  5 ) ;

p r in tf ("R a w  T ra n s fe r  R a te s \n " ) ;

p r i n t f ( "HostCPU I E th e rn e t I D ataSet I RecIOTime I SendlOTime I CPUTime SwapOut Sw apln\n“) ;  

f o r  ( ; ; )  {
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msgs = a c c e p t ( s ,  0 , 0 ) ;  /*  s t a r t  a c c e p tin g  co n n ec tio n s  * /  

i f  (msgs == -1 ) 

e r r o r  (" a c c e p t11) ; 

getSw aps (fcsw apO utS tart, f ts v a p In S ta r t ) ; 

b z e ro (a r rd im s , s iz e o f ( a r r d im s ) ) ;

i f  ( re a d b u ffe r(m sg s , a rrd im s , s iz e o f ( a r r d im s ) )  < 0 ){  

p r i n t f ( " E r r o r  re a d in g  a r rd im s \n " ) ; 

g o to  end ;}

i f ( w r i te b u f fe r (m s g s , a rrd im s , s iz e o f ( a r r d im s ) )  < 0 ){  

p r i n t f ( " E r r o r  w r i t in g  a r rd im s \n " ) ; 

g o to  end ;}

m a tr ix  = ( f l o a t  * )m a llo c (a r rd im s[0] * a r rd im s [1 ]* s i z e o f ( f l o a t ) ) ;  

b z e ro (m a tr ix , s i z e o f ( m a t r ix ) ) ;  

g e ttim e o fd a y (fe s ta r tlO , & tz ) ;

i f  ( re a d b u ffe r(m sg s , m a tr ix , a r rd im s [0 ]* a rrd im s [1 ]* s i z e o f ( f l o a t ) ) < 0){  

p r i n t f ( " E r r o r  re a d in g  m a t r ix \n " ) ; 

g o to  end ;}  

g e ttim eo fd ay (feen d lO , & tz ) ; 

t im e S ta t s [0] = E x p T im e(s ta rt10, en d IO ); 

g e ttim eofday(& startC om p, Sctz);

FFT_H atrix  (m a tr ix , a rrd im s [0] , a rrd im s [1] ) ;

gettim eofday(ftendC om p, & tz ) ;

t im e S ta ts  [2] = ExpTim e(startCom p, endComp);

g e tt im e o fd a y (& s ta r tI0 ,  & tz ) ;

i f  (w r ite b u f  f e r  (m sgs, m a tr ix , a rrd im s [0] *a rrd im s [1] * s iz e o f  ( f l o a t ) ) < OH 

p r i n t f  (" E r ro r  w r i t in g  r e s u l t  A n " ) ; 

g o to  end ;}  

g e ttim eo fd ay (ften d lO , & tz ) ; 

t im e S ta t s [1] = E x p T im e(sta rtIO , endIO ); 

i f  (w r ite b u ffe r (m s g s , t im e S ta ts ,  s iz e o f ( t im e S ta t s ) )  < 0) 

p r i n t f ( " E r r o r  w r i t in g  tim e s t a t s \ n “) ; 

end:

getCPUInfo(6CPU);

getSwaps(feswapOutEnd, feswapInEnd);

p r i n t f  (*y,f 100 ‘/,d  '/,f '/,f '/,f  '/,d  '/,d\n" , CPU, a rrd im s [0 ]* arrd im s [1] * s iz e o f  ( f l o a t )  . t im e S ta ts  [0] , t im e S ta ts  [1] ,

sw apO utEnd-sw apO utStart, sw apInE nd-S w apInS tart);

f r e e ( m a t r ix ) ;

}

}
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v o id  s ig n a l .h a n d le r ( in t  s ig )

p r i n t f ( " \ n I / 0  e r r o r  h as o c cu rre d  (Broken p i p e ) .\n A ttem p tin g  to  resume norm al o p e r a t io n . \ n " ) ; 

sig n a l(S IG P IP E , s ig n a l .h a n d le r ) ;

>
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