Design and Analyses of a Cluster Computer

by

Damian Trybus

Faculty of Engineering Science
Department of Electrical and Computer Engineering

Submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

Faculty of Graduate Studies
The University of Western Ontario
London, Ontario, Canada

© Damian Trybus 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-96874-X
Our file Notre référence
ISBN: 0-612-96874-X

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UWO Licenses

And

Certificate of Examinations
are kept on file at

The University of Western Ontario
In

The Faculty of Graduate Studies

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Parallel computing, as opposed to sequential processing, plays a growing

role in solving increasingly complex computational problems. Traditionally
mainframes and top of the line workstations were used for scientific (high
power) computing. This dissertation investigates parallel computing by means
of a variable computer cluster approach. An original variable cluster, based
on PC-class computers, was produced and implemented for the purpose of
this research, along with the necessary algorithms and computer codes. The
processing performance of the variable cluster was evaluated in the case of
different computing workloads provided by high incidence computational al-
gorithms for one and two-dimensional FFT, as well as by Laplacian field (mesh)
algorithm calculations. In order to allow for comparison with other studies (for
instance, Amdahl’s work), SpeedUp and Efficiency served as main concepts for
the analysis of collected experimental data. Performance gain and reliability
depend on the type of computing problem, amount of data transferred, num-
ber of machines participating in the computation, as well as on the physical
characteristics of the machines and on infrastructure. A discrete model ex-
plaining the experimental data is proposed; an additional continuous model is
also developed. ”Resonance” workloads are to a certain extent predicted by
our modeling, and the relation with computational performance is specified.
Useful insights into the appropriate match between the computational algo-
rithm and the cluster architecture are documented in our study.
The implemented computer cluster was found to be a robust platform that
could be used for development of engineering applications requiring greater
computing power than regular workstations can deliver. For selected cases the
processing performance of the variable cluster scaled linearly with the number
of nodes involved in the computation.

Keywords: Distributed Computer, Parallel Processing, FF'T, Algorithms,
Modeling

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

This project would have not been possible without the help and support [
received from my advisor, Professor Z. Kucerovsky. The discussions we have
had throughout the past six years have changed the way I think and opened
my eyes to see things I never knew existed. He inspired me to go further than

I believed I could and allowed me to make this project a reality.

I would like to thank my wife Dorothy and my children Daria and Daniel
for their support. For a number of years they have put up with late nights,
missed appointments, exams and other interruptions to their life so I could

pursue my Ph.D. degree in Electrical Engineering. I owe them a great debt.

Last and certainly not least I would like to thank Adrian and Rodica Ieta
for their help with the assembly of the thesis.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

CERTIFICATE OF EXAMINATION i
ABSTRACT iii
ACKNOWLEDGEMENTS iv
CONTENTS v
LIST OF TABLES X
LIST OF FIGURES xi
NOMENCLATURE xiii
1 Introduction 1
1.1 Why Parallel Computation? 1

1.2 Cluster Computers, 2

1.3 Scope of the Project 3

1.4 Background of Thesis 3

1.5 Design Considerations 4

2 Cluster Computing: Theory and Applications 6
2.1 Cluster Computer Theory 6
2.1.1 Cluster Computer Architecture 10

Shared Memory Systems 11

Scaling considerations. 13

Distributed Memory Systems 14

Performance considerations. 15

Ethernet Networks 15

Message Passing, 16

2.2 Parallel Processing 18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.1 Computations 18

Processes 19
Threads 20
Threads vs. Processes. 20
2.2.2 Communications 21
Data Transfer, 21
Data Transfer Time. 21
Communication Time 22
Communication Cost 22
System overhead 23
Context Switching. 23
System Call Overhead. 23
Interrupt/Signal Latency: 23
Semantics. oo 24
Reliability. 24
2.3 Parallel Processing Examples 24
2.3.1 Emptying a swimming pool using pails. 24
2.3.2 Assembling a hard disk using a pipeline. 25
2.4 Parallel Performance 26
241 SpeedUp 28
Superlinear SpeedUp 28
242 Efficiency 29
Efficiency Example L. 29
243 AmdahlsLaw. 30
2.44 SpeedUp Limitations 32
2.5 Performance Evaluation of the Cluster 35
2.5.1 Microbenchmarkso 35
252 Workloadso 36
Matrix Multiplication 37
FET . . . 38
2D-FFT. 39
Electric Field Approximator 40
26 Modeling. 43
2.6.1 Linear Model, 44
2.6.2 Nonlinear Model 45
2.6.3 Discrete Systems oL 45

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Apparatus

31 Server
3.1.1 Server Hardware
3.1.2 Server Software

Kernel Configuration . .
Development Software .

3.2 Cluster Member
3.2.1 Hardware Configuration
3.2.2 Software Configuration .

Network Boot
Kernel Configuration . .
Diskless Client

3.3 Network Connection
331 NICs...........
332 Hubs...........
3.3.3 Network Topology . . .

3.4 Scalability

Cluster Network Implementation

4.1 Network Connectivity
4.1.1 Client-Server Computing
4.1.2 OS Support

Network Support
Binary Compatibility . .

4.2 Network Services
4.2.1 DHCP and BOOTP . .
422 TFTP
423 NFS

Cluster Applications

5.1 Matrix Multiplication
5.1.1 Sequential Algorithm . .
5.1.2 Parallel Algorithm . . .
5.1.3 Cluster Implementation
5.1.4 Concluding Remarks . .

52 2DFFT.
5.2.1 Sequential Algorithm . .
5.2.2 Parallel Algorithm . . .
5.2.3 Cluster Implementation
5.2.4 Concluding Remarks . .

vii

.................

.................

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Electric Field Approximation 94

5.3.1 Sequential Algorithm 95

5.3.2 Parallel Algorithm 96

5.3.3 Cluster Implementation 98

5.3.4 Concluding Remarks 103

5.4 Multitreaded Server Applications 103

5.4.1 Matrix Multiplication 104

Cluster Server Sequential Pseudo Code 104

54.2 2D-FFT 105

5.4.3 Shared Memory Access 106

6 Experimental Data and Results 107

6.1 System Latency 107

6.2 DataTransfer 109

6.2.1 Raw Data Transfer 110

6.2.2 Marshalled Data Transfer 110

6.2.3 Cluster Data Transfers 110

6.3 Matrix Multiplication 111

6.4 2DFFT e 111

6.5 Mesh Calculations 116

7 Discussion 118

7.1 Performance and Scalability 118

7.1.1 Distributed Matrix Multiplication 118

7.1.2 Distributed 2DFFT 119

7.1.3 Distributed Grid Calculation 122

7.2 Distributed Matrix Multiplication Modeling 123

7.2.1 Discrete Model 123

IO Performance 123

Matrix Multiplication I/O Analysis 123

CPU Performance 126

Cluster Performance 128

7.2.2 Continuous Model 131

Data Transfer 131

CPU Utilizationn 131

8 Summary and Conclusions 137

8.1 Recommendations for Future Work 141
viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Cluster Program Listings

A1l Cluster Libraries
A.1.1 Socket Library
socket.c

A1.2 Database Library
sqiibho

sqllib.c L

A.1.3 System Library
system.co

Al4 Matrix Library
arrayops.h L L

AITAYOPS.C .+ v v v o v e e e e e e e e

A2 2D-FFT Code o
A2.1 Server
clusterserver.co

A.22 Cluster Member

BIBLIOGRAPHY
INDEX

VITA

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144
144
145
145
147
147
147
150
150
151
151
151
156
156
156
161

165

182

184

List of Tables

6.1 Networklatency
71 Ciand CyValueso

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

2.11
2.12
213

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2

von Neumann Computer Architecture 7
Cluster Computer Architecture 8
Flynn’s Taxonomy for Processors 10
Shared Memory Cluster Computer 12
SMP architectures 13
Distributed Memory Cluster Computer 14
User-level send /receive message-passing abstraction 16
Latency and bandwidth of I/O devices 18
Generic scalable multiprocessor organization. 19
Components of execution time from the perspective of an indi-

vidual processor. 27
Amdahl’s Law SpeedUp 32
Amdahl’'s Law Efficiency 33
Optimum and actual parallel implementation times 34
SMP support kernel compilation 50
Listing of /etc/procfile. 51
Bus Topology 59
Star Topology 59
Typical Client—Server 64
Implemented Cluster Client—Server 65
Exponent evaluation serial algorithm 72
Parallel exponent evaluation client 73
Parallel exponent evaluation server 73
Sequential matrix multiplication algorithm 74
Mesh calculations Lo 103
Sequential Server Code 105
Machine latency on 10MBit network 108
Machine latency on 100MBit network 109

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

Transfer Rate on 10MBit Network 111

Transfer Rate on 100MBit Network 112
Matrix multiplication speedup on 10MBit network 112
Matrix multiplication speedup on 100MBit network 113
2D-FFT speedup on 10MBit network 114
2D-FF'T SpeedUp on 100MBit network 114
Large memory 2D-FFT SpeedUp on 100MBit network 115
Mesh calculations SpeedUp on 10MBit network 117
Mesh calculations SpeedUp on 100MBit network 117
Large data matrix multiplication SpeedUp 119
Large data 2D-FFT SpeedUp 120
Large data 2D-FFT SpeedUp (Super SpeedUp) 121
Large data grid calculation SpeedUp 122
Cluster I/O Performance for a distributed matrix multiplication 125
Matrix multiplication algorithm 126
Data partitioning algorithm 127
Matrix multiplication discrete model 130
Cluster transfer rate 132
Cluster CPU utilization 133
Matrix multiplication 5 machine SpeedUp model 100MBit . . 135
Matrix multiplication 6 machine SpeedUp model 100MBit . . 136
A, p,y values for Matrix Multiplication 136

xil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nomenclature

Beowulf: Computing cluster based on PC hardware and Linux operating sys-
tem

BOOTP: Bootstrap Protocol, IP management system for network hosts.
CM: Cluster Member.

CoW: Cluster of Workstations

CS: Cluster Server

CSMA /CD: Carrier Sense Multiple Access with Collision Detection. Medium
access method for local area networks that employ a bus or tree topology.

DMS: Distributed Memory Systems
EDO: Extended Data Out. RAM type used in Pentium class computers.

Efficiency: A measure of parallel performance that is closely related to speedup.
Efficiency is defined as: Ef ficiency = %];,1@2 x 100%

FFT: Fast Fourier Transform.

IP: Internet Protocol, message passing protocol

LAN: Local Area Network

Linda: environment used for developing programs on DMS systems.
Linux: UNIX clone operating system

MIMD: Multiple Instruction Multiple Data.

MISD: Multiple Instruction Single Data.

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MPI: Message Passing Interface, environment used for developing programs
on DMS systems.

MPP: Massively Parallel Processor.
NFS: Network File System.

NIC: Network Interface Card.

NoW: Network of Workstations
NUMA.: Non-Uniform Memory Access
OS: Operating System.

Parallel Computer: Computer with more than one processors capable of
executing multiple instructions at the same time

PC: Personal Computer
POST: Power On System Test, self conducted computer tests prior boot.

PVM: Parallel Virtual Machine, environment used for developing programs
on DMS systems.

RAM: Random Access Memory.

ROM: Read Only Memory

SDRAM: Synchronous Dynamic Random Access Memory.
SIMD: Single Instruction Multiple Data.

SISD: Single Instruction Single Data.

SMP: Symmetric Multi Processor

SMS: Shared Memory System

SpeedUn: Time required for one processor to compute a task
P P "Tme required for N processors to complte a task

TCP: Transfer Control Protocol, runs on top of IP.
TFTP: Trivial File Transfer Protocol

UDP: User Datagram Protocol, runs on top of IP.

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMA.: Uniform Memory Access

x86: Processor architecture base on Intel x86 processor (i386-1686)

XV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Sequential computers (computers that perform one task at a time) are quickly
reaching a physical limit regarding the speed at which they process data, which
cannot be increased through the use of faster components. The speed of light
places an upper limit on the performance that can be achieved with a sequential
architecture. For many computational problems, the time they take to obtain
a solution using a sequential computer is unacceptably slow. One way out
of this impasse is provided by parallel computation. On a parallel computer,
several processors cooperate to solve a problem simultaneously in a fraction of

the time required by one processor [4].

1.1 Why Parallel Computation?

Parallel computers are used primarily to speed up computations. A parallel
algorithm can be significantly faster than the best possible sequential solution.
There is a growing number of applications, in science, engineering and medicine

that require computing speeds that cannot be delivered by any current or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 2

future conventional computers. These applications involve processing large
amounts of data, or performing a large number of iterations, or sometimes
both. The practicality of problem solution is often dictated by associated time
constrains. The relevance of a 24 hour weather forecast may be questioned if
it requires 36 hours to calculate [23, p 1|. Parallel computation is the only

approach known today that would make these computations feasible.

1.2 Cluster Computers

Engineers and scientists are the primary users of high performance computers.
Historically their options were limited to a few computing platforms. Large
problems could be solved only on mainframe computers or state of the art,
high performance workstations. Access to mainframes is usually not very con-
venient and state of the art workstations are expensive. Computer technology
is changing in a rapid manner and machines become obsolete as soon as they
are delivered to the user. It is also quite difficult and cumbersome to migrate
data, applications and system settings from an old machine to a new one on
a frequent basis.

Personal Computer (PC) revolution brought computers to the masses. PCs
became common these days as calculators were several years ago. One can
find networks of PCs in libraries, classrooms and laboratories. While those
machines are usually used on a regular basis, they spend most of their time
idling, doing nothing useful. Quite often these idling machines are connected
to a Local Area Network (LAN) and they can also be accessed remotely.

While PCs idling in libraries are usually not high end machines, there are
many of them and they are connected to a fast LAN. Traditional parallel com-

puters have scaling problems and tend to be very expensive. It is possible to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 3

organize several workstations into a computing cluster and utilize their idling
processors by scheduling and coordinating tasks that would be computed by
the machines. Advantages are clear; there is no need to purchase new hard-
ware (as existing resources would be utilized) and, with clever programming,
problems that could be solved only by large machines would easily be solved

by a cluster of workstations.

1.3 Scope of the Project

The project involved the design, implementation and analysis of a computing
cluster. Several workstations were converted into cluster members for the ex-
periment. A high end PC was assembled from standard, commercially avail-
able, parts and configured to administer the cluster. Several benchmarking
applications were written and run on the cluster. The performance and ap-
plicability of the cluster were analyzed. The two most important performance

aspects analyzed were speedup and efficiency.

1.4 Background of Thesis

Plentiful and inexpensive computer hardware together with free and powerful
operating systems have led to the advent of distributed computing. Networks
of Workstations (NoWs), Clusters of Workstations (CoWs) and computing
clusters, such as the Linux based Beowulf cluster, have become very common
and their applicability is the subject of studies in many research institutions.

Flores [48] writes:

“Research in parallel computing has traditionally focused on mul-

ticomputers and shared memory multiprocessors. Currently, net-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 4

works of workstations (NoWs) are being considered as a good alter-
native to parallel computers. That is due to there are high perfor-
mance workstations with microprocessors that challenged custom-
made architectures. This class of workstations is widely available
at relatively low cost. Furthermore, these networks provide the
wiring flexibility, scalability and incremental expansion required in

this environment.”

The majority of the Beowulf clusters in operation today run industrial
benchmarks and the results of the benchmarks are compared against commer-
cial supercomputers. Performance analysis of a high performance workstation
conducted by Trybus [134] demonstrated several problems in SMP architec-
tures. The main idea behind the conducted research was to build a distributed
computing cluster and analyze its performance. The main emphasis was put
on creating an open platform that could be used for conducting a variety of
engineering experiments. Several applications were run on the cluster and its

performance was evaluated.

1.5 Design Considerations

Several factors influenced the design of the cluster. The most notable factors

include:
e Utilization of standard, commercially available bardware,

e Adaptation of standard software, operating system and networking soft-

ware,

e Scalable and expandable architecture,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 5

e High performance to price ratio,
e Flexibility and ease of configuration.

Researchers agree that such design decisions are difficult to make. Havick [61]

writes:

“One of the most difficult tasks in designing and commissioning
a Beowulf cluster is considering the price/performance trade-offs
from the multitude of possible configuration options. There are
four crucial hardware parameters to choose in the design of a Beo-
wulf cluster: the type of processor to use in the nodes; amount
of memory installed in each node; the amount and type of disk
installed in each node and the network infrastructure that is used to
connect the nodes. The best options will depend on the particular

application.”

Havick [61] also states that Beowulf clusters are typically built from com-
modity computers, usually PCs with x86 processors or workstations based on

RISC processors.

The thesis investigates the efficacy of the selected architecture in solv-
ing a range of scientific problems and determines the performance as well as
the efficiency of the system. The thesis also demonstrates the importance of
the match between the algorithm and the architecture in achieving maximum

computational performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Cluster Computing: Theory and
Applications

This chapter introduces the theory of cluster computing, demonstrates known
architectures and presents applications that could be run on a cluster com-
puter. Parallel computing limitations are briefly described and Amdahl’s law

is discussed in some detail.

2.1 Cluster Computer Theory

In the late 1940’s, a group of researchers at Princeton University proposed
a design that ushered the modern computer era. Half a century later the
overwhelming majority of computers in use follow this original design. In such
a design, presented in figure 2.1, a computer consists essentially of a single
processing unit, local memory and input/output devices. The processing unit
executes a single sequence of instructions on a single sequence of data. Both

instructions and data are stored in main the memory of the computer. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 7

(Control BUS)
C Data BUS)

Processor Memory o)

C Address BUS)

Figure 2.1: von Neumann Computer Architecture

sequence of instructions is the program, which tells the processor how to solve
a certain problem. The sequence of data is an instance of that problem. Such
a computer performs one instruction at a time. Such a model of computation
is known as sequential (or serial, or conventional) computer [4, p. 2].

A parallel computer, by contrast has two or more processors. Such a computer
is capable of processing more than one sequence of instructions on one or more
sequences of data at the same time.

A cluster computer is a collection of off-the-shelf workstations connected by
an off-the-shelf LAN [6, p. 475]. A typical cluster configuration is shown in
figure 2.2.

The availability of inexpensive hardware and free sophisticated operating
systems allowed researchers and developers to design and analyze PC clusters.

Koski [73] writes:

“During recent years clustered systems using off-the-shelf proces-
sors and standard Ethernet networks have been increasingly popu-
lar. The motivation has been primarily the cheap price of systems,
but also the rapid development of standard processors. So-called

Beowulf systems have spread around the world. This development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 8

Parallel Applications

Sequential Applications

Parallel Programming Environments

PC/ PC/ PC/ PC/
Workstation Workstation Workstation Workstation
Network Network Network Network
Software Software Software Software
Network Network Network Network Network
Hardware Hardware Hardware Hardware Hardware
| High Speed Network &

Figure 2.2: Cluster Computer Architecture

is further accelerated by the Linux-boom which provides an ideal

and free operating system for these clusters.”

There are several reasons for designing and implementing cluster comupterse.

Cluster environment can be used for:
e Fault Tolerance,
e Load Balancing,
e High Performance Computing.

Computer fault tolerance is quite often implemented by the means of identical

or very similar systems where the backup system is aware of the state of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 9

system it is protecting. The state of the cluster is usually preserved on a shared
disk and the two systems have a private communication link that is used to
determine the availability of the production system. Should the production
system fail, the backup system will come on line with the same services that
the production system offered and the state of those services will be the same
as the one prior to the failure of the production server. Fault tolerance is
usually implemented on mission critical database servers. Microsoft Wolfpack
is an example of such technology [119].

Load balancing is a popular way of increasing the availability of a service by
means of two or more systems providing the same static services or services
that do not change with time. An example of such a system would be a web
server serving web pages to clients. The web content can be replicated to
multiple servers, possibly located in different parts of the world. Clients do
not care where the information comes from as long the requested information is
received. The only requirement that needs to be fulfilled is that the information
be consistent among all participating cluster members.

High performance, cluster computing is driven by the following factors [109,

p. 53]

1. Solving large problems that ran too slowly even on the fastest supercom-

puters (simulations, scientific engineering applications).

2. Solving problems that were too large for any other available computer

(multi-dimensional FFT’s, operation on large matrices).

3. Cost saving computing of problems that could be solved on existing

albeit more expensive hardware.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 10

Researchers agree [142] that there is a renewed diffusion of parallel plat-

forms from symmetric multiprocessors to PC clusters. Santoso [121] writes:

“With the advent of large computing power in workstations and
high speed networks, the high-performance computing is moving
from the use of massively parallel processors (MPPs) to cost effec-

tive clusters of workstations.”

Workstation based clusters have become a feasible alternative to expensive,

commercially available systems.

2.1.1 Cluster Computer Architecture

A formal classification of computer architectures according to a macroscopic
view of their principal interaction patterns relating to instruction and data

streams was proposed by Flynn in 1972. What has become the so called

Flynn’s taxonomy is shown in figure 2.3 [23, p. 14]. A cluster computer
Single Multiple
Insftruction instruction
stream stream
Single Data
siream SISD MISD
)
)
Multiple Data SivMD MIMD
stream ez

Figure 2.3: Flynn’s Taxonomy for Processors

falls into the MIMD category as it is possible to run multiple instructions

streams (MI) working on multiple data (MD) at the same time. There are two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 11

main architectures used for implementing cluster computers. The first archi-
tecture, UMA (Uniform Memory Access), uses processors that share common
memory. A more common name used for UMA systems is SMS or Shared
Memory Systems. The second popular architecture, NUMA (Non-Uniform
Memory Access) uses processors that have private memory and communicate
via a bus or a network. In this thesis NUMA systems are referred to as DMS

or Distributed Memory Systems.

Shared Memory Systems

Shared memory systems utilize the most prevalent form of parallel architecture
used in multiprocessors of small to moderate scale. This architecture provides
a global physical address space and access to all of main memory from any
processor {38, p. 269]. A generic view of the SMP architecture is shown in
figure 2.4. Two variations of the generic implementation exist; they are shown
in figures 2.5a and 2.5b. Figure 2.5a shows a multiprocessor computer where
both the cache and the main memory are shared. Such architecture does not
suffer from the cache coherence problems but if the combined speed of the
CPUs is larger than the speed of the cache serious performance degradations
are experienced. This approach has been used for connecting very small num-
bers of processors, usually 2-8. Such architectures were very popular in the
mid-1980’s. The architecture shown in figure 2.5b is the most common SMP
architecture found in modern multiprocessor systems. Each processor has its
own cache, where it stores instructions and data. Such architecture suffers
from cache coherence problems [38, p. 273]; however, if properly implemented
it delivers great performance. This architecture is used to implement medium

scale multiprocessors counsisting of 2030 processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLuUSTER COMPUTING: THEORY AND APPLICATIONS 12

Shared Memory

C Interconnection Method >

Processor 1 Processor 2 O O O Processor n

Figure 2.4: Shared Memory Cluster Computer

In the SMP architecture the shared space is supported directly by hard-
ware. User processes can read and write shared virtual addresses, and these
operations are realized by individual loads and stores of shared physical addres-
ses. The operating system does not need to be involved in address translation
because it is provided by the hardware.

Sharing the memory uniformly amongst all processors allows each proces-
sor equal access to all memory locations. The memory in UMA machines is
typically implemented in a central location with the processors acquiring ac-
cess across a high-speed interconnection mechanism such as a bus or crossbar

switch. Communication and thus co-operation amongst processors is tightly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 13

Shared Memory) k Shared Memory

l | !

L

C Shared Cache) C Bus
S E— # * =
] | l
P1 P2 P3| 00 O | Pn PR | 0O O Pn
(a) Shared cache (b) Dedicated cache

Figure 2.5: SMP architectures

coupled and occurs within the common memory via shared variables. Some
arbitration mechanism is necessary to prevent simultaneous updates of these
shared variables and to solve contention on the interconnection network [23,

p. 29].

Scaling counsiderations. SMP systems use processors connected to one
shared bus. A shared bus has a maximum length, and a fixed maximum
bandwidth. These physical constraints limit expandibility of a SMP machine.
In modern machines buses run at high speeds and the width of the connecting
conductors is usually no longer than a few inches. The links become slower
with length and every technology has an upper limit on length due to power
requirements and signal-to-noise ratio[38, p. 455]. Chip-level integration tech-
nologies allow denser packaging and have been implemented by several ven-
dors. The SMP systems available on the market today usually do not exceed

64 processor configurations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 14

Interconnection Method

TN
\
~—

N - N e ~
l.ocal) (Local ‘ { Local
Memory /‘ | Memory Memory J
N N~ \\u‘_/"/
Processor 1 Processor 2 O O O Processorn

Figure 2.6: Distributed Memory Cluster Computer

Distributed Memory Systems

Implementing a virtual shared memory environment across all processors of
a multiprocessor system introduces complex global communication patterns,
as processing elements may need to fetch data items from anywhere within
the system. Such communications place the heaviest strain on any system.
An answer to this problem might be provided by NUMA systems. NUMA
computers or distributed memory systems have memory that is physically
distributed amongst the processors. The distributed memory is still accessible
to all processors; however, the access time will differ depending on whether
the requested memory address is local or remote to the requesting processor.
A remote memory access requires communication across the interconnection
network that links the processors and thus the distributed memory [23, p. 29].

A generic view of the DMS architecture is presented in figure 2.6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 15

Performance considerations. The performance of a distributed memory
multiprocessor depends in large part on the efficiency of the message transfer
system that provides the interface between the co-operating processors [23,
p. 203]. Communicatious, by their nature, fall into the sequential processing
category and thus can affect parallel systems’ performance. Communication
overheads inhibit overall system performance. Thus the efficiency of system
communication plays a crucial role in reducing implementation penalties and
in improving the scalability of the parallel solution of any problem.

Distributed memory systems use message passing mechanisms to communicate
with member computers. Communications among member computers are the
most critical points to support parallel applications in distributed memory
systems [54]. The most widely used communication in computer clusters is

message passing on an Ethernet network.

Ethernet Networks FEthernet technology was developed in late 1972 at
Palo Alto Research Center (PARC) of Xerox Corporation. The design was
successful and now Ethernet is the predominant LAN technology. The early
Ethernet specifications contributed substantially to the work done by the IEEE
of the 802.3 standard defining the CSMA/CD.

Data on an Ethernet network is transferred in Ethernet frames which are later
encapsulated by TCP/IP frames. An Ethernet frame consists of the following
sections: 1)preamble (8 bytes), 2) destination (6 bytes), 3) source (6 bytes),
4) type/length (2 bytes), 5) data (46-1500 bytes), 6) frame check sequence (4
bytes). An Ethernet frame can vary in size from 64 to 1518 bytes[86].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 16

Message Passing

In figure 2.7 we can see a user level send/receive message passing abstraction

as proposed by Culler [38, p. 39].

/\

Match

Receive (Y, P)
Send (X, Q)

Address X

Local process
address space

Process P

Address Y

Local process
address space

Process Q

Figure 2.7: User-level send /receive message-passing abstraction

There are several techniques to accomplish member communications. There

are widely used programming environment or toolkits for writing parallel pro-

grams to run on distributed memory MIMD hardware. Environments such as

MPI, PVM and Linda provide constructs that allow a program to perform the

three essential functions [23, p.s 41-54]:
e Define Parallel Execution

e Start and Stop Execution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLusTER COMPUTING: THEORY AND APPLICATIONS 17

e Coordinate Parallel Execution

These environments have been implemented on many parallel architectures,
and are particularly in demand as possible ways to obtain parallel execution
on LAN-connected workstations. All of these implementations use IP and tend
to give latencies in the millisecond range. [6, p. 249]. From Hobs [65] we learn
that execution environments built on top of an operating system such as PVM
introduce unnecessary overheads, since many of the services provided by the
environment are also offered by the underlying operating system.

The performance of a programming environment needs to be balanced against
ease of use, in particular in engineering applications. Rackl [115] has deter-
mined that in the CORBA’s environment the data overhead is about 30% over
plain TCP/IP. It has been determined that plain TCP/IP adds hundred to
several thousand instructions per message [48]. However, even though TCP/IP
introduces overhead and has large latency, its overall overhead is only about
4% of the total transfer [115]. Given the above observations, it was concluded
that plain TCP/IP socket based communications will be used as the message
passing mechanism in the cluster.

One needs to carefully design a distributed application in order to benefit
from the cluster’s combined power. Contrary to SMS machines, the communi-
cations of the DMS machines are very expensive. Matsuda [89] shows that the
memory bandwidth of a current PC is at least two orders of magnitude greater
than the bandwidth of a 10MBit Ethernet network. A summary of latency and
bandwidth of common I/O devices is listed in figures 2.8a and 2.8b. Because
of these constrains it is generally assumed that only embarrassingly parallel
applications (that is, applications that almost never communicate) can make

use of workstation clusters [11].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 18

~10ms

400MB/s

250MB/s

10MB/s

2ns .

R — - L2 Cache RAM HD Network
L1Cache L2Cache RAM HD Network 100MBit
100MBit

(a)Latency (b)Throughput

Figure 2.8: Latency and bandwidth of I/O devices

2.2 Parallel Processing

Almasi [6, p. 5] defines the parallel processor as:

“A large collection of processing elements that can com-

municate and cooperate to solve problems fast.”

The author quickly adds that this definition raises more questions than it
answers. In figure 2.9 we see a generic scalable parallel processor organization

as proposed by Culler [38, p. 51].

2.2.1 Computations

Multiprocessor hardware delivers greater power than single processor equiva-
lents only when it is properly utilized [134]. The two most common techniques
used on multiprocessor architectures are processes and threads. Quite often a

combination of both techniques is used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 19

C Network)
Node o O O

Communication

Memory

Processor

Figure 2.9: Generic scalable multiprocessor organization.

Processes

A process is an independent program with its own memory for local variables
and a stack for procedure calls. Multitasking operating systems can run mul-
tiple processes simultaneously. All running processes are distributed evenly
among all processors available in the system. In general, the creation of a
process is an expensive task. The operating system has to allocate memory
space for the process, load the process into memory and start executing it.
Once the process is started, it is difficult and expenéive to communicate with
it. In order for distinct processes to communicate with each other they have to
use interprocess communication techniques involving pipes and system calls.

Processes have been extensively employed on multiuser, time sharing machines,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 20

to utilize the hardware efficiently. Multi processor SMS machines can benefit
from multiple processes running concurrently. An example of such an efficient
utilization is a server computer running a Web server process and a Database
process. Clients connect to the server via the Web and update data in the
database. The server can run both processes concurrently provided it has

enough processors to run them on.

Threads

A thread is an independent procedure running inside a process. A process can
have many working threads. Threads are inexpensive to create and have full
access to process data. This means that a program can have multiple threads
communicating with each other via shared variables, similar to the way pro-
cedures communicate with each other. Thread oriented operating systems are
capable of assigning program threads to separate processors. This phenom-
enon is very beneficial, since it is possible to develop multithreaded programs
and take advantage of multiprocessor hardware. The operating system, run-
ning a multithreaded process, would schedule the processes’ threads to run on
distinct processors, and thus higher throughput could be achieved [134].
Threads are commonly used on SMS machines. There have been numerous
attempts to extend the thread programming paradigm to the DMS environ-

ment; however, so far none has been very successful [124].

Threads vs. Processes. Industry studies show that it is much more ex-
pensive to create, and context switch a process than a thread. A new UNIX
process takes about 11 times more time to create than a new thread on the
same computer. The same studies show that it takes 5 times more time to

switch between UNIX processes than to switch between threads belonging to a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLuUsTER COMPUTING: THEORY AND APPLICATIONS 21

common execution environments. The context switch cost is most important

because it is incurred many times in the lifetime of a program [32].

2.2.2 Communications

Distributed applications running on a cluster computer need to communicate
with each other and access global data. In section 2.1.1 we learn that cluster
computers fall into the MIMD category. Such machines cannot use shared
variables for communications. SMS systems could use inter-processes com-
munications as described above. DMS machines, however run processes on
physically distinct machines. The most common way of communications on
such systems are remote procedure calls, which are commonly implemented

via sockets [20].

Data Transfer

A network computer or computer cluster is heavily dependent on the inter-
connecting infrastructure. Such machine communicates with cluster members
using network. In order to evaluate performance several concepts need to be

identified and measured.

Data Transfer Time. The time required for a data transfer operation is

generally described by a linear model:

Transfer Time = Ty + %[s]

where n is the amount of data (usually in bytes), B is the transfer rate of the

medium (in comparable units to n, usually bytes/sec) and Tj is the start-up

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CuaPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 22

cost. This model is used widely to describe a diverse collection of operations,
memory accesses, bus transactions, and message passing. Culler also notices
that the bandwidth of a data transfer operation depends on the transfer size;
as transfer size increases, it approaches the asymptotic rate of B, which is
sometimes referred to as 7. How quickly it approaches this rate depends on
the start-up cost. It is easily shown that the size at which half of the peak
bandwidth is obtained, the half-power point, is given by:

ny = L0
B

=

Communication Time Communication time is the time that is required to
establish communication and to transfer data between cluster members. The

following model is used to describe this operation:

Communication Time(n) = Overhead + Occupancy + Network Delay

where Overhead is the time spend by the processor preparing the message and
initiating the transfer, Occupancy is the time it takes for the data to pass
through all components on the communication path (hubs, switches, routers)
and Network Delay is the remaining communication time (access to media,

collisions, etc.)

Communication Cost From the performance point of view the most im-
portant fact is the Communication Cost. The following model was proposed

by Culler to define the communication costs:

Communication Cost = Frequency x (Communication Time - Overlap)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CuAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 23

where the Freguency is the number of communication operations per unit of
work in the program and the Overlap is the portion of the communication op-
eration that is performed concurrently with other useful work (computations

or other communications) [38, pp. 60-63].

System overhead

We realize that network communication involves more than just the transport
medium. Several factors have been identified that contribute to the overall

performance and capabilities of a network communication layer [68].

Context Switching. The difference between special purpose HPC systems
and cluster workstations begins to disappear, as programs are now running
in a multiprocess environment. This makes context switching overhead hard
to avoid. This is particularly visible when one overlaps communication with

computation.

System Call Overhead. In an operating system such as Linux it is the ker-
nel’s task to access the actual networking hardware via a system call, shielding
the hardware from the application for portability and security reasons. The
approach also allows for sharing of the hardware between different applica-
tions. If direct access to the hardware by an application is allowed a significant
speed up can be obtained. This is however not acceptable for a large number

of application domains that use the network.

Interrupt/Signal Latency: Network interface cards communicate with CPU

through interrupts signaling finishing sending or receiving data. Handling in-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 24

terrupts causes overheads. Quite often those interrupts are propagated to the

user space and further degrades the performance.

Semantics. The semantics expected by programs or interface definitions of-
ten do not match the most optimal way of sending or receiving data. Conve-
nience does not match efficiency. While near optimal communication speed can
be reached for simple operations, this will not be possible in practice for more

sophisticated operations such as multicasting and non-blocking operations.

Reliability. Software communication layers must deal with packet loss on
the hardware level. TCP/IP implements this by using sequence numbers and

acknowledgments which in turn lead to overhead.

2.3 Parallel Processing Examples

The previous section outlined several problems that a cluster designer must
face when designing a cluster. The following section gives two examples of

thinking in parallel.

2.3.1 Emptying a swimming pool using pails.

Openshaw [109] maps parallel processing to tasks occuring in everyday world
using the following example. Consider the problem of emptying a pool using
a pail. If one worker would need T time to empty the pool then quite likely
ten workers would empty the pool in approximately 7'/10 time and N persons
could empty the pool in T/N time. We know that the pool is of finite size
and that it contains X pails of water. While this is a clear parallel task (each

person could carry a pail of water independently), it is very unlikely that the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CuaPTER 2. Cruster COMPUTING: THEORY AND APPLICATIONS 25

pool would be emptied in one unit of time if X workers were used. There
are several possible aspects that can affect the time required to complete the
operation. For example, there might not be enough space to accommodate
more than W workers, adding more than W workers would cause collisions
and serious congestion in gaining access to the pool (shared resource). We
can also observe that a possible saturation has occured when the workforce
reached W workers. Introducing additional workers would mean that some of

the workers already working would have to be retired or slowed down.

2.3.2 Assembling a hard disk using a pipeline.

One major disk manufacturer produces hard drives that are assembled sequen-
tially in various plants around the world. Casing is produced in the USA. The
casing is then shipped to the UK where the motor is mounted. The platters
are mounted in Malaysia and the head assemblies are mounted in Taiwan. The
finished product is sent to the USA. As long as the pipeline is filled and the
flow can be sustained, all plants are working together to produce the product.
It is often the case that a flaw is discovered in a batch of components. The
entire pipeline is affected by the problem. If the problem is discovered late
in the process, it might take weeks before the flow of the finished products is
restored. The process can not be sped up by adding additional factories, as

they will not help the process.

The above examples illustrate typical problems that a developer must face
while designing and implementing a parallel processing machine. Installing

more processing entities than there is work will not help solving the problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 26

Moreover communications between the processing entities should be consid-
ered and kept to the minimum, especially if the processing entities do not

share memory.

2.4 Parallel Performance

Quite often FLoating point OPerations (FLOPS) are used to describe the com-
puting power of a computer. While it is possible to use FLOPS to describe
the theoretical computing power of a cluster computer, it is quite often an un-
realistic figure that does not describe the performance of a cluster computer.
If one were to use FLOPS as a measure of the computing power of a cluster,

one could use the following formula:

N
Power = Z Machine; FLOPS

i=1
Summing the FLOPS of all machines participating in the cluster would give
the theoretical performance of a cluster in FLOPS. That figure could only
be used if all machines could work continously on a given problem at their
peak speed. That formula does not consider inter processor communications,
job scheduling overhead and processor synchronization problems. Figure 2.10
illustrates how those factors impair overall system performance. This figure
shows two systems. The first one is a single processor machine computing in
a sequential manner. 80% of the computing time is spent performing ‘busy-
useful’ operations and 20% of the time is spent on accessing data. The second
system consists of four machines computing in parallel. First we note that
the total execution time of the second machine is not four times shorter than

the first. The second system has several aspects it needs to deal with. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. COCLUSTER COMPUTING: THEORY AND APPLICATIONS 27

busy-useful fraction is close to 20% but we also have factors such as busy
overhead (instructions not needed in sequential program), data remote (time
spent waiting for remote data) as well as interprocess synchronization issues
[38, p. 157].

In order to describe accurately the cluster’s performance it is proposed that
two terms be used: SpeedUp and Efficiency. SpeedUp describes how much
performance gain is achieved using the cluster. Efficiency shows how efficient

the cluster participants utilized in the cluster are.

100 100 B Busy-useful ~ E Busy-overhead
Data-local Data-remote
75 75 & Synchronization
’g)
-, @,
E =
Et o
25 25
0 0
1 1 2 3 4
Se_qential Computing Parallel Computing with four processors
with one processor

Figure 2.10: Components of execution time from the perspective of an indi-
vidual processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 28

2.4.1 SpeedUp

SpeedUp is defined as:

SpeedUp = Time required for one processor to compute a task

Time required for N processors to compute a task

or we could also write this in the following way:

SpeedUp =

Busy(Timelprocessor) + Datalocal(Timelp'rocessor)
Busyuseful(N) + Datalocal(N) + SyTLCh(N) + Dataremote(N) + Busym)erhead(N)

SpeedUp can be a number from 0 to N, where NN is the number of proces-
sors present in the system. Ideally we would like to achieve the so called perfect
SpeedUp, which is a linear function: SpeedUp = N i.e. If a problem takes
T time to compute on one processor, the same problem run on N processors
would be computed in % Perfect speedup is rarely achieved in practice. Al-
gorithms that achieve linear SpeedUp are called completely parallelizable, and

not surprisingly, are highly desired [6, p. 195].

Superlinear SpeedUp

Superlinear SpeedUp is defined as a speedup that is greater than the number
of processors used. Superlinear Speedup is achieved when a large sequential
problem can be mapped efficiently on a set of processors participating in the
experiment. The data and the code of a large problem quite often would not
entirely fit into memory and cache. Given multiple processors a problem could
be divided in such way that every processor computes only on a fraction of the

entire dataset. Then each processor could utilize its cache and registers more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 29

efficiently and superlinear speedup could be achieved. Superlinear speedup
usually indicates that the sequential problem had cache miss or page fault

problems.

2.4.2 Efficiency

Efficiency is a measure of parallel performance that is closely related to speedup.

We define efficiency as:

SpeedUp

Ef ficiency = N

One could define efficiency as the average speedup per processor. In a com-
puting cluster it is not very likely that every processor will devote 100% of
its time to cluster computations. Efficiency measures the fraction of time the
processors are being useful. The range of efficiency lies between 0 and 1. When

efficiency is equal to 1 this corresponds to perfect speedup of:
SpeedUp = N

Efficiency Example

Consider the problem of multiplying a vector of 100 elements by a scalar S.
The pseudocode to perform such operation would be written as follows:

For ¢ =1 To 100

X;=X; %8

Next 1

If this operation is performed on a single processor and the time required to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 30

perform one iteration is ¢ then the computation will take
Single ProcessorTime = 100t

If the operation is performed on a computer with eight processors, the follow-
ing strategy could be employed. Each of the eight processors would perform
equal number of multiplications and the remaining multiplications would be
performed by a single processor. In our case seven processors would perform
twelve multiplications and one processor would perform twelve multiplications
together with the seven processors and then it would perform four multiplica-
tions. The total execution time would then be 12¢ + 4¢ = 16¢

The SpeedUp is then calculated as:

100t

SpeedUpgch = 'ﬁ = 6.25

The Efficiency is calculated as:

2
Efficiencygopy = 98—5 = .78125 or 78.125%

The less than perfect SpeedUp is due to load imbalance.

2.4.3 Amdahl s Law

There is considerable skepticism regarding the viability of massive parallelism;
the skepticism centers around Amdahl’s law, an argument put forth by Gene
Amdahl in 1967 [7] according to which even when the fraction of serial work
in a given problem is small, s, the maximum SpeedUp obtainable from even
an infinite number of parallel processors is only 1/s.

If N is the number of processors, s is the fraction of time spent (by a serial

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 31

processor) on serial parts of a program and p is the fraction of time spent (by
a serial processor) on parts of the program that can be done in parallel, then

Amdahl’s law says that speedup is given by

SpeedUp =

s+ %

where s+p=1

The range of s lies between 0 and 1 (0% and 100%). When s = 0,
then SpeedUp = N and perfect parallelism is achieved. When s = 1, then
SpeedUp = 1, and there is no benefit from parallelism. SpeedUp is limited
by the fact that not all parts of our code can be run in parallel. Even if an
infinite number of processors is used, the SpeedUp is still limited by 1/s [53,
pp 24-26]. The sequential fraction s has a strong effect on SpeedUp. This
explains the need for large problem sizes. As the problem size increases the
opportunity for parallelism grows, and the sequential fraction decreases and

reduces its importance for SpeedUp.

Quinn [114, pp 45-47] reevaluates Amdahl’s law. He states that if a large
fraction of sequential code is identified it should be performed by the fastest
participating processor and it should preferably be overlapping other code that
could be done in parallel. Quinn also adds that parallel computers will be
able to compete with supercomputers only if they have at least one processor
capable of extremely fast sequential operation or if they execute algorithms

with virtually no sequential component.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLuUSTER COMPUTING: THEORY AND APPLICATIONS

. \Siﬁmp
28
24 \l
\ —e— 2 CPUs
20 ~&— 4 CPUs
\ —4—8 CPUs
16 d—m ~u— 16 CPUs
\\ \\ —¥#— 32 CPUs
12
8 A*\:—\\\\W‘\%
44 m - - _ _ — s 2
, 40— Geyial Fraction
0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Figure 2.11: Amdahl’s Law SpeedUp

32

2.4.4 SpeedUp Limitations

In practice quite often one encounters problems that cannot efficiently be

solved on parallel architectures. The SpeedUp can be affected by several as-

pects. Richardson [118] identifies the following SpeedUp limitations:

e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I/0

Memory Contention
Algorithm

Problem Size

Load Imbalance
Sequential Code

Parallel Overhead

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 33

Efficiency
90%
o \\\\ ‘B\'\E\E\&
\’\ \n\ \ = 2 CPUs
0%
\ \'\ \\ ~ 4 CPUs
60% \Y\ \K\’\ g —a— 8 CPUs
0% —#— 16 CPUs
\‘\ \ ~¥%— 32 CPUs
40% "
30% \

20%

10%

0% ’ : ‘ ' I ‘ ’ . } Serial Fraction
0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Figure 2.12: Amdahl’s Law Efficiency

There are many problems involving continuous I/O operations. If a problem
is I/O bound the slow (and very likely sequential) operations take more time
compared to the amount of computation.

In the majority of cases computer algorithms deal with any problem in a
sequential manner that is not suitable for parallel computers. Parallel versions
of sequential algorithms need to be designed and implemented to utilize parallel
hardware. SpeedUp is almost always an increasing function of problem size.
The size of the problem can affect the way it can be solved. If a problem
is trivial or too small to take best advantage of a parallel computer then it
cannot be computed efficiently on a large parallel system. In other words, if
there is not enough work to be done by the available processors, the system
will show limited speedup. By the same token, if a problem size is fixed
and it can be solved with a given set of processors, it will not benefit from

additional hardware. Adding more processors will not reduce to computation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLuUSTER COMPUTING: THEORY AND APPLICATIONS 34

time and in some cases it even increases computing time. Figure 2.13 shows
two curves. The ‘optimum time’ curve shows the execution time as a function
of the number of processors present in the system. Such result is what one
would like to expect from a parallel computer. A more realistic curve is the
‘actual time’ curve. The curve shows an initial decrease in the time taken
by the example problem on the parallel system up to a certain number of
processing elements. Beyond this point, adding more processors actually leads

to an increase in computation time [23, p. 78].

100% - —
—¢— Optimum Time
—ag Actual Time
80%
o
E
= 60%
o
8
=
= 40%
24
g
o
L
20%
0% - : ‘ ‘ : : : . . . : :
1 2 4 6 8 10 20 30 40 50 60 70 80 90 100
Processors

Figure 2.13: Optimum and actual parallel implementation times

In section 2.4.2 it was demonstrated how load imbalance can affect SpeedUp
and overall efficiency. A designer will attempt to map a given problem onto
parallel hardware, but quite often the processors will have unequal workloads.
This causes some processors to idle as they wait for other processors to finish

their work. Amdahl’s law demonstrates the effects of the sequential part of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CrLusTER COMPUTING: THEORY AND APPLICATIONS 35

code on the overall performance. In general, most computer programs have a
sequential nature. This limits speedup as shown by Amdahl’s Law. Figures
2.11 and 2.12 show how even a small fraction of the sequential code can affect
the SpeedUp. Parallel programming introduces additional overhead. Parallel
algorithm is almost always larger and more complicated than a sequential
equivalent. Additional processor cycles are required to create parallel regions,

threads, synchronizing threads, and spin/blocking threads.

2.5 Performance Evaluation of the Cluster

A first step in evaluating a real machine is to understand its basic perfor-
mance capabilities—that is, the performance characteristics of the primitive
operations provided by the programming model, communication abstraction
and hardware/software interface. The two most common ways of evaluating

system performance are microbenchmarks and workloads [38, pp 215-217).

2.5.1 Microbenchmarks

Microbenchmarks are small, specially written programs designed to isolate
performance characteristics such as latencies, bandwidth, overhead, etc.

Five types of microbenchmarks are used in parallel systems:

1. Processing microbenchmarks measure the performance of the processing

capabilities of the machine.

2. Local memory microbenchmarks determine the organization, latencies,
and bandwidths of the levels of the memory hierarchy within the local

node and measure the performance of local read and write operations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CoAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 36

3. Input-output microbenchmarks measure the characteristics of I/O ope-

rations, such as disk reads and writes of various strides and lengths.

4. Communication microbenchmarks measure data communication opera-
tions such as message sends and receives or remove reads and writes of

different types.

5. Synchronization microbenchmarks measure the performance of different

types of synchronization operations, such as locks.

The developed cluster had distributed memory; therefore, only results from
microbenchmarks 1, 3, 4 and 5 will be analyzed and discussed.

For measurement purposes, microbenchmarks are usually implemented as re-
peated sets of primitive operations (e.g. 1000 floating point operations on data
in a row). They often have simple number of parameters that can be varied to
obtain fuller characterization. For example, one can vary the amount of data

to calculate, or change the number of processors processing the data.

2.5.2 Workloads

Workloads can be divided into three classes:
1. Kernels
2. Multiprogrammed workloads
3. Complete applications

Kernels are well-defined parts of real applications but are not complete applica-

tions themselves. Kernels usually provide computing facilities for applications

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 37

but do not support any communications, or vice versa. Multiprogrammed
workload tests involve running multiple applications on the same system si-
multaneously. The overall performance of the system is observed. The cluster
discussed in this thesis is providing computing facilities for specialized engi-
neering calculations. The main objective of the workload handling capability
should be the performance evaluation of the machine when running engineer-
ing programs. Three popular applications were implemented and run on the
cluster and the performance of the cluster was then observed. The three ap-
plications developed were: matrix multiplication, two-dimensional FF'T and,

finally, electric field approximator.

Matrix Multiplication

Matrix multiplication is a fundamental part of many complex science and en-
gineering applications [23, p. 25]. The algorithm is relatively computationally
intensive and is very often used to assess the performance of computer systems
[10], [23], [51], [56], [70], [96].

The product of two matrices is represented as [C] = [A][B], where the elements

of [C] are defined as [24]:
Cij=>_ AixBuj

k=1
A sequential matrix multiplication algorithm might be implemented in the fol-

lowing way:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 38

Fori=1Tom

For j=1Tol
Ci;j=0
Fork=1Ton
Cij = Cij+ Aip X By
Next &
Next j

Next 4

Such code is well suited to a highly parallel MIMD design with processors
powerful enough to carry out substantial computations on their own [6, p.
307]. Matrix multiplication is an inherently parallel algorithm with well-
defined points of synchronization and is thus well suited to implementation
on a cluster computer. Consider the multiplication of two n X n matrices per-
formed by p processors. A balanced workload is achieved by allocating each
processor a sub-problem of computing the (2 X n) x (n x g) submatrix of the
problem. These operations may be carried out in parallel by p processors.
The best solution of the multiplication of the two n x n matrices on p < n?
processors is achieved in O(QE), provided that communication time is much
smaller than computation time [23, p. 32].

A distributed version of the matrix multiplication algorithm listed above was

implemented and used to evaluate the cluster’s performance.

FFT

Fourier transform is a powerful tool for many problems, and especially for
solving various differential equations of interest in science and engineering [50,

p 1]. The Fourier transform algorithm has a complexity of O(n?). The most

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CrLUSTER COMPUTING: THEORY AND APPLICATIONS 39

popular implementations of the transform are based on an algorithm proposed
by Cooley and Tukey. The so called fast Fourier transform, or FFT as we will
refer to it, has a lower computational complexity of only O(nlog(n)). Similar
to matrix multiplication the FFT algorithm is frequently used to measure the

performance of computer systems [6], [51], [70], [101], [117].

2D-FFT. The two-dimensional Fourier transform is required in applications
that involve two-dimensional data sets, such as image processing and geophys-
ical analyses [44].
Let [A] be an L x M 2-dimensional complex matrix. The L x M 2-dimensional
transform of [A] denoted by F(AyL) is the L x M 2-dimensional array [B]
defined by:

M—-1L-1

B=%Y Ay et/ Lo2mism/M
m=0 =0

which can be written in a compact matrix notation:
[B] = F(L)[A]F (M)

This method is called row-column because it computes [B] by a sequence of
1-dimensional finite Fourier transforms of the rows of [A] followed by a se-
quence of 1-dimensional finite Fourier transforms of the resulting columns.
The matrix [B] is computed in two stages. First an intermediate matrix of
Fourier transforms of the rows is computed, then a second series of Fourier
transforms of the columns is performed on the resulting matrix. Computation
of an N x N -point 2-D Fourier transform requires 2N complete, 1-D FFT
calculations. The cost of such a computation would be 2N (Niog(N)) plus

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CrLustTeEr COMPUTING: THEORY AND APPLICATIONS 40

the communication overhead. Communication during the distributed compu-
tation requires four transfers of the N x N matrix.

Consider the computation of 2-dimensional FFT on a N x N data matrix
computed by p processors. A balanced workload is achieved by allocating
each processor a sub-problem of computing the (%’— x N) submatrix of the
problem. These operations may be carried out in parallel by p processors.

The best solution of the computation is achieved in O(QIM%QI_V_))), plus the

communication costs.

A popular FFT program suite [90] has been adapted and modified to com-
pute the two dimensional FFT on the cluster computer and to evaluate the

cluster’s performance.

Electric Field Approximator

Numerous problems that arise in engineering can be visualized as a 2-dimensional
grid where the values of the individual elements vary over time in response
to the values of neighbouring elements. Examples of such problems include
electric field intensity, thermal conduction, oceanographic simulation, and
atmospheric modeling. Partial Differential Equations (PDE’s), having well
known solution techniques, can be expressed in a data parallel fashion using
arrays to store a discretized representation of the problem [34]. Grid or mesh
techniques are frequently used to approximate the states of continuous enti-
ties that behave in a wave-like or fluid fashion. Problems where each point in
the grid has the same computational requirement are quite often called uni-
form. Partial Differential Equations are commonly used to solve uniform grid

problems. Laplace’s equation governs steady-state distribution of electrical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CLUSTER COMPUTING: THEORY AND APPLICATIONS 41
potential on a plane [116]:
V= =+ =0 (2.1)
z
The derivatives can be replaced by the finite difference approximation:
1
f'(z) = 1 f(z +h) = 2f(z) + f(z — h)] (2.2)
Which yields the formula:
V2

~ el -+ hy) 4 (o — hy) +ule,y+)+ (e y —)~ dule,y)] (23)

Setting V2 = 0 and h = 1 (grid granularity) produces an algorithm that can

be used to calculate any value on the grid whose dimensions are [z+1] % [y+1]:
1
u(z,y) = Flu(z +1,y) +u(z - Ly) +ul@y+ 1 +u(zy-1)] (24

A sequential mesh calculation algorithm might be implemented in the fol-

lowing way:
Fory=1Tom
Forz=1Tol
Aw,y = (A:v+1,y + Am—l,y + Az,y+1 + Aw,y—l)/4
Next z
Next y

Depending on the size of the grid the above calculation might have to be re-
peated several times in order to achieve accurate results. The number of
iterations required will vary from one grid problem to another.

Such code is frequently implemented on SISD machines, since the values of all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CrLusTEr COMPUTING: THEORY AND APPLICATIONS 42

data points depend on the values of all elements of the grid. The computation
of N x N grid points requires N? floating point divisions and 3N? floating
point additions, and the execution times become very long when N is suffi-
ciently large. The computational complexity of the algorithm O(n?) makes it
an attractive problem to be implemented in a distributed environment.
Distributed implementation of this algorithm requires partitioning of the grid
and assigning the partitions to every computer participating in the compu-
tation. This partitioning and assignment of the data is usually done by one
machine, which is aware of all the machines participating in the computa-
tions. Since the computed data reside on machines physically distinct from
each other, additional communications are also required in order to ensure
correct grid values at the partition boundaries. The communications can ei-
ther take place among the participating machines or they can be performed
between the participants and the machine acting as a server. The later ap-
proach was chosen, as it is the server that assigns data to the participants.
The server is also aware of the boundaries resulting from the partitioning of
data. Communications can be performed either in a synchronous or an asyn-
chronous manner. Since all participants had the same CPU and the number
of data points required to compute, the grid values, at the boundaries is only
4N per participant, the synchronous type of communication was chosen and
implemented.

Consider the calculations of the grid values of an n X n matrix performed by
p processors. A balanced workload is achieved by allocating each processor
a sub-problem of computing the (% x n) submatrix of the problem. These
operations may be carried out in parallel by p processors. The best solution
of the calculations of the grid values of n X n matrix on p < n processors is

achieved in 0(1’5-), provided that communication time is much smaller than

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CrusTeErR COMPUTING: THEORY AND APPLICATIONS 43

computation time.
A distributed version of the mesh algorithm listed above was implemented and

used to evaluate the cluster’s performance.

2.6 Modeling

The physical principles underlying the behaviour of most electronic devices
are fairly complex, although the actual electrical behaviour of the device may
be quite straightforward. Rather than attempt to relate physical effects of the
device directly to network analysis, an intermediate step can be undertaken.
This step is generally represented by the behaviour of the device by voltage-
current or other appropriate components such as resistors, voltage or current
sources or other ideal elements. In the latter case, the device is easily analyzed
in terms of circuit theory.

For classical analysis the standard approach has traditionally been to apply an
equivalent circuit to linear (small-signal) problems. Either a graphical analysis
or piecewise linear analysis is applied to the solution of large signal circuits.
Large-signal or nonlinear networks are often too difficult to analyze, and it
is not uncommon to resort to several simplifying assumptions to obtain an
approximate solution. Frequently, problems might require a large volume of
calculations if a high degree of accuracy is to be maintained. Thus with manual
analysis it is almost always necessary to simplify the device model to reduce
the complexity of the overall circuit/system [31, p 221].

An attempt was made to produce several models that characterize/resemble
the behaviour of the designed system. Modeling in this sense is the process
that represents the electrical properties of a device or interconnected device by

means of mathematical equations, circuit representation or tables. Complex

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CrLUSTER COMPUTING: THEORY AND APPLICATIONS 44

devices and large scale systems are characterized by macromodels that re-
flect their behaviour. Modeling at both levels, device and terminal, is equally
important. Device level models are used for accurate analysis and design
of smaller networks. Eventually, if these networks represent typical building
blocks in larger systems, macromodeling is used to simplify the representa-
tion and speed up the analysis. Frequently, device information/behaviour will
be obtained through a series of experiments and then the designer is faced
with the task of implementing and constructing a model of the system from
measured data. Physical device models usually involve a number of mathemat-
ical equations. Typical timing studies have shown that the major problem in
analysis is in evaluating these complicated relationships. Further, most analy-
sis methods also require derivatives of the model equations—a cumbersome and
error-prone task for the designer. For these reasons, increasing use is being

made of approximations of the model equations [136, p. 308].

2.6.1 Linear Model

Since resistors, capacitors, inductors, switches and ideal sources can be ana-
lyzed in an orderly manner, frequently an attempt is made to relate devices
such as active circuits to these elements. The basic elements have known
voltage-current characteristics that can be characterized by constant, time-
invariant parameters. Many important applications require the device to op-
erate over only a small area of the possible operating region within which the
characteristics will be approximately linear. A disadvantage of this method
is that once the device is modeled by constant-parameter elements, the area

over which linear operation takes place is not apparent. Thus a given input

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. (CLUSTER COMPUTING: THEORY AND APPLICATIONS 45

signal, applied to the actual circuit, may be large enough to cause a highly
distorted output, while the circuit model will predict a non distorted output.
Some attention is then required in prescribing the limits over which a given
model is valid, especially when automatic analysis programs are utilized [31,

p 223].

2.6.2 Nonlinear Model

Simple circuits can be used to model complicated systems only when the sys-
tem’s operating region is small. Frequently the nonlinearities inherent in the
device characteristics begin to distort the response of the actual system. In
order to describe the system’s nounlinearities one must resort to sophisticated
modeling techniques. One method for analyzing nonlinear circuits is that of
piecewise linear approximation. The nonlinear characteristics are averaged
over the swing of interest and represented approximately by linear character-
istics. A linear circuit model yielding the linearized characteristics can then
be proposed. For devices passing from one operating region to another, a
different, linearized equivalent circuit ¢an be proposed for each region [31, p

229].

2.6.3 Discrete Systems

Discrete systems are difficult to model in a linear fashion. Frequently a trans-
formation of the discrete system needs to take place before continuous mod-
eling techniques can be used. In order to perform continuous modeling of the
response of a system, one needs to analyze it as a system that changes in time.

Example of such transformation can be a transformation of a computational

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. CrLUSTER COMPUTING: THEORY AND APPLICATIONS 46

task involving a series of computations whose length or complexity increases
when the calculations of the last computation are complete. The total time
required to perform the computations is the sum of the computation times
of the varied sized problems. The system response is recorded at the end of
each iteration and the data is plotted. The intervals at which the response is
recorded increase with the increase of the data on which the system computes.
Frequently only selected regions of the system response can be modeled with
a satisfactory level of accuracy using one modeling technique. Often multiple
models need to be devised to accurately model the entire response of a com-
plex system.

Modeling the performance of distributed systems requires identification of crit-
ical phenomena affecting the response of the system. In distributed environ-
ments, the performance of the I/O and floating point components plays an
important role. In this thesis we will attempt to identify and study the per-
formance of the above identified, critical cluster components. Later we will

attempt to develop a discrete and a continuous model of the designed system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Apparatus

The previous chapters specify that one of the objectives of the experiment
was to develop a machine that would have a high performance to price ratio.
In order to accomplish the task the cluster needed to be implemented using
commodity commercially available parts. The following hardware components

were identified as the absolute minimum:

e Cluster Server
e Several Cluster Members
o Network Connections

Adaptation of standard software, operating system and networking software
was also identified as one of the factors that influenced the development of the
cluster. Linux operating system was chosen as the development platform. All
popular Linux distributions come with development tools such as compilers,

debuggers and related literature. For details and history of Linux please refer

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. APPARATUS 48

to the appendix. The networking details of the implemented cluster will be

addressed in the next chapter.

3.1 Server

The server computer was the only computer assembled from new parts. While
it was not crucial to build a fast machine to coordinate cluster activities, it
had to meet several requirements. The following services had to be provided

by the server:
e Development platform (all code was compiled on the server)

e Network management:

1. NFS server

2. TFTP server
3. BOOTP server
4. DHCP server

5. Telnet server
e Cluster coordination
e Experiment data collection and management

Several observations should be made at this point. Firstly, we realize that the
server might potentially be required to perform several tasks simultaneously.
A multiprocessor architecture, while not required, would help ensure the accu-
racy of the experiment results being recorded. Secondly, we observe that the

server will be providing file services for several cluster members as well as for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. APPARATUS 49

itself. A dedicated disk should be allocated to each task if possible. Lastly,
we note that the server will be providing a variety of network services to the
cluster members participating in the experiment. A fast Ethernet network

card, possibly multiple cards, should be installed in the server.

3.1.1 Server Hardware

The server was assembled using commercially available parts which were pur-
chased at a local computer store. The following is a list of components used

to assemble the server:

e Dual Processor Pentium II/Pentium IIT Motherboard

Two Intel Pentium III processors

128MB of SDRAM memory

Two Ultra 2 SCSI hard discs

AGP Video Card

Fast Ethernet Network Card

Tower Case

3.1.2 Server Software

The RedHat distribution of Linux was the operating system of choice. The
RedHat flavour of Linux comes with several development tools. This distri-
bution also has all networking software that was needed to set up a network

management system required for the experiment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. APPARATUS 50

make config

make dep

make clean

make bzImage

make lilo

make modules

make modules_install

Figure 3.1: SMP support kernel compilation

Kernel Configuration

Most Linux distributions do not provide a kernel that is multiprocessor aware.
In order to enable the SMP support one needs to compile a custom kernel and
enable several configuration options. The following options need to be selected

while compiling [94]:

e Processor Type and Features:
MTRR (Memory Type Range Register) support: ENABLED
Symmetric multi-processing support: ENABLED

e General Setup:
Advanced Power Management BIOS support: DISABLED
RTC (Real Time Clock) support: ENABLED

Like most UNIX kernels, Linux kernel, is monolithic but it is possible to use
kernel modules for device drivers. It is necessary to recompile all modules to
enable the SMP support. Figure 3.1 lists the commands that need to be issued

to compile and activate the SMP support on RedHat Linux operating system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. APPARATUS 51

processor : O processor : 1
vendor_id : Genuinelntel vendor.id : Genuinelntel
cpu family : 6 cpu family : 6
model 7 model 1 7
model name : Pentium III (Katmai) model name : Pentium III (Katmai)
stepping : 3 stepping : 3
cpu MHz : 451.026194 cpu MHz : 451.026194
cache size : 512 KB cache size : 512 KB
bogomips : 450.56 bogomips : 448.92
(a) Processor 1 (b) Processor 2

Figure 3.2: Listing of /etc/proc file

The multiprocessor kernel operation can be determined in two ways. Firstly,
one can examine kernel messages at the boot when the kernel tries to detect all
processors and activate them. Secondly, the information about the system’s
CPUs can be found by examining the contents of the /proc/cpuinfo virtual

file. The information obtained from the /proc/cpuinfo file is shown in figure

3.2.

Development Software

RedHat 6.1 Linux comes bundled with program development software (com-
pilers and libraries) as well as the documentation useful for programmers and
system developers. A list of packages installed on the server can be found in

the appendix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CEAPTER 3. APPARATUS 52

3.2 Cluster Member

In order to built an inexpensive cluster one could use computers that have
been previously deployed and are reaching the end of their productive life
cycle. Such machines are often found in computer laboratories or libraries.
Several Pentium class computers were obtained and modified to participate in

the experiments.

3.2.1 Hardware Configuration

The hardware requirements for a cluster participant were very modest. It was
determined that a computer consisting of the parts listed below would fully
suffice:

e CPU: Pentium class

Memory: 16MB or more

Floppy Drive: 3.5”, 1.44MB

NIC: Ethernet 10MBit or 100MBit

Hard Drive: optional

Video: optional

e Keyboard: optional

All cluster member computers came with local hard disks, video cards and
keyboards but these items were not directly utilized. None of the computers
contained a local copy of the operating system and the computers booting
were not booting of the local hard drive. All machines were booting of the

server via network. However, the hard drive was utilized. In order to minimize

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. APPARATUS 53

network traffic and avoid system swapping via network, the swap partition of
each cluster member was mounted on its local hard drive. The remaining pe-
ripherals (video cards and keyboards) were not used after the initial setup was
performed. Most modern computers can be “told” to operate without a video

card or a keyboard by modifying settings in the computer’s BIOS.

3.2.2 Software Configuration

As stated in the previous section, each cluster member was booting of the
cluster server via the network. In order to accomplish this task two issues
need to be addressed. Firstly, the booting computer has to be told, and be
able, to use the network card as its booting device. Secondly, a customized
version of the operating system needs to be available to the booting computer

at the time of the boot.

Network Boot

The first task can be accomplished via the means of a BOOT ROM in the
network card of a cluster member. The second approach is to provide the
computer with an image of the operating system on a floppy disk. Each ap-
proach has its benefits, but it also has some drawbacks.

Creating BOOT ROMS requires that one obtain BOOT ROM images of each
network card used in the cluster. Such images are often subject to copyright
agreements and are in general difficult to obtain. The second problem with
such an approach is that one needs to physically remove the ROM chip from
the network interface card when one does not want to boot from the network.

On a developmement system one quite often needs to modify the kernel image

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. APPARATUS 54

of a cluster member. Each such a modification would require the creation of a
new set of boot floppies; booting from a floppy drive is also much slower than
booting from a hard drive or via the network.

A feasible compromise would be to provide the BOOT ROM code to the com-
puter on a floppy disk. Several free (Linux based) software packages provide
BOOT ROM images that could be burned into an eeprom and then used for
network booting. The etherboot package allows developers to test BOOT
ROM images prior to EEPROM burning. The etherboot software package
allows for the creation of boot floppy disc containing only the BOOT ROM
code (8KB). This was a perfect compromise between a commercial BOOT
ROM and a fully blown OS image on a floppy. The BOOT ROM code is
loaded in less than a second and then the network boot takes place. Changes
to the cluster member’s kernel can be made in one central location and they
will be picked up by booting cluster members. If a computer participating in
the experiment for some reason needs to be used for other tasks, it can be used
without the need to open the case and remove the BOOT ROM.

The boot process can be divided into the following steps:

1. Power On System Test (POST),

2. Boot device identification,

3. Loading boot code,

4. Location of the Operating System files,

5. Loading of system files and mounting file systems.

The boot is accomplished in the following manner: first a boot floppy is located

and the BOOT ROM code is loaded; next the booting computer broadcasts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. APPARATUS 55

requests for an image of the OS files. When such a broadcast is detected by
the cluster server, the server tells the client where it can locate the image of
the kernel. After the kernel image is loaded, the control of the boot processes
is passed to the kernel. The kernel identifies the hardware configuration of the
machine and recognizes the fact that it needs to finish the boot process using
the network. Another broadcast request is sent inquiring about the location of
the system files and remote file systems. After this information is provided by
the server, the cluster member finishes loading system files, mounts the swap
partition on the local hard drive, remote file systems on the server, and the
boot is complete. Any files required by the computer after the boot are loaded

from file systems mounted from the server.

Kernel Configuration

A custom kernel needs to be built in order to support diskless configuration
of a cluster member. The following options were specified during the kernel

configuration procedure:

e Filesystems:
Second extended fs support

Network File Systems:

— NFS filesystem support: ENABLED

— Root file system on NFS: ENABLED

e Network Device Support:
Ethernet (10 or 100Mbit):

— Cluster Member Network Card Type: COMPILED-IN (not as module)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. APPARATUS 56

Diskless Client

As stated in the previous section, none of the computers participating in the
experiment had a local copy of the operating system. The operating system
was loaded via network and file systems were mounted on the server. The

listing below shows all file systems mounted by a cluster member:

1. asus2p3:/tftpboot/cm3 on / type nfs

(rw,rsize=8192,wsize=8192,timeo=14, intr)
2. none on /proc type proc (rw)
3. none on /dev/pts type devpts (rw,gid=5,mode=620)

4. asus2p3:/tftpboot/usr on /usr type nfs
(rw,rsize=8192,wsize=8192,timeo=14, intr,addr=192.193.1.250)

5. asus2p3:/home/development on /development type nfs
(rw,rsize=8192,wsize=8192,timeoc 14,intr,addr=192.193.1.250)

The first entry shows that the root of computer CM3 is mounted on com-
puter named asus2p3 (the server) in the /tftpboot/cm3 directory. The next
two entries apply to virtual file systems that are not mounted physically. The
fourth entry shows a common /usr file system that is shared among all clus-
ter participants. Finally, the fifth entry shows that the working directory of
the currently logged user is mounted on asus2p3 in the /home/development

directory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. APPARATUS 57
3.3 Network Connection

The most common type of networking technologies used today is Ethernet.
Ethernet is also the least expensive networking hardware available today.
While Ethernet technology does not scale and reaches its peak efficiency at
60% medium utilization, it works well on medium sized networks [128]. There
are three types of Ethernet hardware available on the market today. The
first and most common type is 10MBit Ethernet. 10MBit Ethernet hardware
runs at 10MHz and delivers transfer rates around 1MB/sec. The second type,
so called “Fast Ethernet” runs at 100MHz and delivers transfer rates around
10MB/Sec. The newest type of Ethernet is “Gigabit” Ethernet. Gigabit Eth-
ernet runs at 1GHz and delivers transfer rates close to 100MB/sec. Gigabit
hardware is still very expensive and the distance between nodes cannot be very
large {25, p 132].

The conducted research examined the applicability of Ethernet and fast Eth-

ernet technologies in cluster topology.

3.3.1 NICs

Two types of Network Interface Cards (NICs) were used. Initially each clus-
ter member had a 10MBit Ethernet card. Later on tests were conducted on

100MBit Ethernet.

3.3.2 Hubs

The 10MBit topology was implemented using a 10MBit hub. The 100MBit
topology was implemented using a 100MBit. The use of a switch was consid-

ered. An Hthernet switch allows for creation of virtual connections between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. APPARATUS 58

two machines exchanging information and that conversation is isolated (fil-
tered) from the rest of the computers present on the network. The performance
of such a network is greater than that of a hub based network because there
are fewer packet collisions. A hub based implementation does not allow for
creation of isolated virtual circuits. Any broadcasting machine is “heard” by
all computers connected; when more than two computers are exchanging infor-
mation, packet collisions contribute to overall network performance [86]. The
cluster’s network topology is illustrated in figure 3.4. We see that the server
has only one network connection. All information sent to cluster members is
carried through that connection. It would be impossible to create multiple
isolated circuits between the server and cluster members. Thus the cluster

would not benefit greatly from the use of a switch.

3.3.3 Network Topology

Ethernet based networks are implemented in two fashions. The original coax
based Ethernet was implemented using bus topology. All participating com-
puters connected to a common bus and broadcast information on the bus.
While still common, the coax based Ethernet is being replaced by twisted pair
based Ethernet, which is implemented using star topology. In star topology
all network participants are connected to a hub or a switch using Category 3
or higher twisted pair cables. One issue worth noting is the fact that the coax
based Ethernet is limited to 10MHz, hence it cannot be used with 100MBit or
faster network interface cards. The star topology was chosen to implement the
cluster’s network infrastructure. The bus and star topologies are illustrated in

figures 3.3 and 3.4 respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. APPARATUS 59

=i —]
iBM Compatibie Workstation Mac Classic

O Ethérnet)

Network Printer QHQEQ e

Server

Figure 3.3: Bus Topology

Cluster
Server

Cluster Cluster Cluster Cluster
Member Member Member Member

Figure 3.4: Star Topology

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. APPARATUS 60

3.4 Scalability

It was important to design a cluster that could scale, or whose performance
would increase with the number of nodes present. While Ethernet networks
benefit from switched technologies, the only communications that take place in
the cluster are the communications between the server and each cluster mem-
ber. In order to create N isolated circuits the server would need N network
cards. The current PC architecture imposes a limit on how many expansion
slots can be present in a PC. Usually a PC will have four expansion slots on
one bus. Some high end servers have two buses, but that would still put a
limit on the number of network cards present in a system.

In order to avoid that physical limitation, it was decided to use one network

card in the server and to observe its scalability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Cluster Network

Implementation

The previous chapter illustrated the topology of the implemented cluster. The
following chapter will provide the reader with additional implementation de-

tails.

4.1 Network Connectivity

The main idea behind the implemented cluster is to utilize the individual
computing facilities of machines that can be accessed remotely via network.
The network is the only connection that exists between the cluster members

and the server.

4.1.1 Client—Server Computing

As stated previously, the computers participating in the cluster are not aware

of each other. They are not even aware of the cluster server. As far as the

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CLUSTER NETWORK IMPLEMENTATION 62

cluster member is concerned it only provides computing facilities to anybody
that requests them. In the implemented cluster, cluster members are actually
computing servers that can perform some computations on the data sent to
them. The results of the computations are sent back to the computer the
data originated from (client). This model of computing is called Client—Server
computing. Some clarification is needed at this point. Cluster member com-
puters are computing servers. The cluster server is a clever client that divides
its computing problem evenly among computing servers. The clever client is
capable of dividing and coordinating the activities of the servers. As far as
the client is concerned, it can send its data to one or more servers and collect
the results. The computing servers do not care where the data comes from.
As long as the client(s) follow a protocol of the server, the server will receive
the data and perform computations on them. The following is the protocol

designed for cluster matrix multiplication:

Cluster Member Cluster Server

(Server) (Client)

Wait for connection Send Matrix Dimensions

Receive Matrix Dimensions Wait for Confirmation of Matrix Dimensions
Wait for Matrix 1 Send Matrix 1

Receive Matrix 1 Wait for Confirmation

Wait for Matrix 2 Send Matrix 2

Wait for Confirmation
Wait for Results

Send Results Receive Results

Similar protocol was designed for cluster FF'T:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CLUSTER NETWORK IMPLEMENTATION 63

Cluster Member Cluster Server

(Server) (Client)

Wait for connection Send Matrix Dimensions

Receive Matrix Dimensions Wait for Confirmation of Matrix Dimensions
Wait for Matrix Send Matrix

Receive Matrix 1
Wait for Results

Send Results Receive Results

The client—server architecture is very common. Quite often servers are power-
ful computers performing computations on behalf of less powerful clients. It is
common to see servers serving multiple clients simultaneously. In our case we
have several computing servers utilized simultaneously by one client. Figures

4.1 and 4.2 illustrate both concepts clearly.

4.1.2 OS Support

One of the desired features of cluster computing is the fact that it can be
performed on machines that are completely independent. Cluster members do
not have to have the same hardware architecture or run the same operating

system. There are a few requirements that need to be satisfied.

Network Support

Each machine participating in the cluster needs to be able to communicate
with the cluster server. The operating system needs to provide a means for
conducting communications. It was decided that the commonly used TCP/IP

protocol should be used as the lingua franca of the cluster. Any computer run-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CLUSTER NETWORK IMPLEMENTATION 64

-

=i i

Client Client

W{'

Figure 4.1: Typical Client~Server

ning an operating system that provides support for TCP/IP communications

can be used to participate in the cluster.

Binary Compatibility

ANSI C programming language was used to develop the code and socket com-
munications were used to pass messages between the cluster participants. GNU
C compiler was used to compile the code for cluster members and the server.
GNU C compiler has been ported to many operating systems. The cluster
member code should run without modifications on any platform to which the

GNU C compiler has been ported.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CLUSTER NETWORK IMPLEMENTATION 65

_$==:!= . e
[E =i
Server \ Server

]
I

Server Server

Figure 4.2: Implemented Cluster Client—Server

4.2 Network Services

The previous chapter addressed the network configurations that needed to be
performed on the client side. The following sections will address the implemen-
tation details on the server side. The server needs to provide several services
for cluster participants. While it is not absolutely necessary that all of these
services be implemented, the services listed below allowed seamless client ad-
dition and automated the cluster administration. The following services were

configured:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CLUSTER NETWORK IMPLEMENTATION 66

e DHCP and BOOTP: IP management
e TFTP: Network Boot

e NF'S: Network File System

The server provides three basic services for the clients. Firstly and most
importantly, it gives them an identity. Secondly, it tells them where to load
the image of the operating system from and finally, it provides them with a

working file system. Each of the services is explained in the sections below.

4.2.1 DHCP and BOOTP

The software used to perform network IP management was Internet Software
Consortium DHCP Server, dhcpd. The software implements Dynamic Host
Configuration Protocol (DHCP) and Internet Bootstrap Protocol (BOOTP).
The DHCP protocol allows a host unknown to the network administrator to
be automatically assigned a new IP address out of a pool of IP addresses for its
network. In order for this to work, the network administrator allocates address
pools in each subnet and enters them into the dhcpd.conf file. On startup,
dhcpd reads the dhepd.conf file and stores a list of available addresses on each
subnet in memory. When a client requests an address using the DHCP pro-
tocol, dhcepd allocates an address for it. Each client is assigned a lease, which
expires after an amount of time chosen by the administrator. Before leases
expire, the clients to which leases are assigned are expected to renew them in
order to continue to use the addresses. Once a lease has expired, the client
to which that lease was assigned is no longer permitted to use the leased IP
address [138].

The dhepd software needs to be configured before it can serve clients. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CLUSTER NETWORK IMPLEMENTATION 67

configuration settings for dhcpd are stored in the /etc/dhepd.conf file:
subnet 192.193.1.0 netmask 255.255.255.0 {

range 192.193.1.80 192.193.1.90;
default-lease-time 36000;

max—-lease-time 72000;

}

group{
filename "/tftpboot/eeprokernel”;

server-name "asus2p3";

next-server 192.193.1.250;

option domain-name-servers 129.100.2.12;
option domain-name "uwo.ca";

host cml {

hardware ethernet 00:D0:B7:BD:49:84A;
fixed—-address 192.193.1.71;

option host-name "cml”;

s

host cm6 {
hardware ethernet 00:D0:B7:BD:90:4D;
fixed-address 192.193.1.76;

option host-name "cm6";

¥
h

The first part of the configuration file contains a range of IP addresses that it
can give out to any client that requests them. In that section one also specifies

the lease time of the IP addresses given out. Before the lease expires the client

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHBAPTER 4. CLUSTER NETWORK IMPLEMENTATION 68

will need to renew the IP address it leases or obtain a new one.

The second section specifies global data for a set of hosts. In our case these
data belong to cluster members participating in the experiment (CM1-CMS6).
The first line tells clients where to find an image of the kernel file to be loaded.
The second line tells clients the name of the server. The remaining options in
the global section tell clients additional information they might need.

The third section contains information organized in groups for each and every
host participating in the cluster. Each host has a network card with a unique
hardware address assigned to it by the card’s manufacturer. The first line in
every group identifies the hardware address of the cluster participant. The
IP address of the participant is found on the second line. Finally, its name is
listed on the third line.

Consider a computer attempting to boot using network facilities. The com-
puter loads the boot code from its BOOT ROM and then it attempts to find
a server that contains an image of the OS the client needs to load. The client
broadcasts requests to DHCP servers present on the network. If a DHCP
server is present on the network, it will answer and offer the client an IP ad-
dress together with the information specifying the location of the kernel image.
If the client accepts the offered IP, it sends an acknowledgment to the server
confirming the acceptance of the lease.

Demonstration of conversation between the server and the client (CM4):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CLUSTER NETWORK IMPLEMENTATION 69

[root/@asus2p3 /rootl# dhcpd -d

Internet Software Consortium DHCP Server 2.0

Copyright 1995, 1996, 1997, 1998, 1999 The Internet Software
Consortium.

All rights reserved.

Please contribute if you find this software useful.

For info, please visit http://www.isc.org/dhcp-contrib.html

Listening on LPF/eth0/00:90:27:77:41:8a/192.193.1.0

Sending on LPF/eth0/00:90:27:77:41:8a/192.193.1.0

Sending on Socket/fallback/fallback-net

DHCPDISCOVER from 00:d0:b7:bd:90:4d via ethO

DHCPOFFER on 192.193.1.74 to 00:d0:b7:bd:90:4d via ethO
DHCPREQUEST for 192.193.1.74 from 00:d0:b7:bd:90:4d via ethO
DHCPACK on 192.193.1.74 to 00:d0:b7:bd:90:4d via ethO

4.2.2 TFTP

When the client receives a valid IP address together with the information
where to find the kernel image, it needs to load and execute it. The protocol
used to load the kernel is TFTP or Trivial File Transfer Protocol. TFTP is
a light version of the File Transfer Protocol or FTP. TFTP is not a secure
protocol and it does not provide authentication. TFTP runs on top of User
Datagram Protocol (UDP) instead of Transmission Control Protocol (TCP).
UDP was chosen instead of TCP for simplicity. The implementation of UDP is
much simpler than that of TCP and the code can fit easily on a BOOT ROM.

Because UDP is a block oriented, as opposed to a stream oriented, protocol,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.isc.org/dhcp-contrib.html

CHAPTER 4. CLUSTER NETWORK IMPLEMENTATION 70

the transfer is performed block by block. A typical conversation between a

cluster member and the server is illustrated in the dialogue below:

CM: Give me block 1 of /tftpboot/eeprokernel
CS: Block 1 of /tftpboot/eeprokernel
CM: Give me block 2 ..

The conversation is carried on until the entire image of the kernel is transferred.
Handshaking is a simple acknowledgment of each block scheme, and packet loss
is handled by retransmit on timeout. When all blocks have been received, the
network boot ROM hands control to the operating system image at the entry
point [39)].

4.2.3 NFS

When the OS kernel boots it needs to mount a root file system. The cluster
was implemented in such a way that each cluster member mounted a root file
system from the server. Thus it always had updated binaries and all cluster
member files were up to date. The protocol used to provide root file systems
for cluster members was Network File System or NFS. After the kernel is
loaded and the root over NFS option is compiled into the kernel (see section
3.2.2) the booting computer can mount a file system residing on the server.
The server hosts a separate OS image for each cluster member. The server
also allows each cluster member to mount a common directory, which is used
to host binaries of programs run by cluster members. The list below contains

all server directories that can be accessed using NFS [74].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. CLUSTER NETWORK IMPLEMENTATION 71

[damian@asus2p3 damian]$ cat /etc/exports
/home/development *.uwo.ca(rw)
/tftpboot/cml *.uwo.ca(rw,no_root_squash)
/tftpboot/cm2 *.uwo.ca(rw,no_root_squash)
/tftpboot/cm3 *.uwo.ca(rw,no_root_squash)
/tftpboot/cmd *.uwo.ca(rw,no_root_squash)
/tftpboot/cmb5 *.uwo.ca(rw,no_root_squash)
/tftpboot/cm6 *.uwo.ca(rw,no_root_squash)

/tftpboot/usr *.uwo.ca(ro,no_root_squash)

The first entry specifies a common directory that is accessible freely by any-
body. The next four entries are unique to each cluster member participating in
the experiment. They contain root file systems of a particular computer (CM1-
CM6). Finally, the last entry lists a common /usr folder that is mounted as
“read only”. The /usr folder on a Linux system contains system files that do

not need to be modified by users.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Cluster Applications

Let us consider the following problem. Suppose we want to evaluate the value

of €” using the following formula:

e 1. X, 2 2 z
e"1+-1—!+2!+3!"'+n! (5.1)

Given the values of z (power) and n (desired accuracy) we could evaluate the

value of ¢* using the algorithm listed in figure 5.1. We can easily see that the

E=1

For i=1 To n
E=E+ x/i'

Next i

Figure 5.1: Exponent evaluation serial algorithm

value of ¢* is the sum of independently calculated discrete fractions of z and
1l. We could easily distribute the task among remote computers and collect
their individual results to produce the value of e*. Figure 5.2 demonstrates
how we can rewrite the serial algorithm in such a way that it could be used

to calculate any part of the series. This program could run on any computer

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 73

E=0

For i=Min To Max
E=E+x/1!

Next i

Figure 5.2: Parallel exponent evaluation client

participating in the computations. We would then need some coordinating
computer that would schedule those computation on remote computers. A

program run by the coordinator is listed in figure 5.3. The computing task

E=1

For i=1 To Number(OfClients
Elil=CalculateE(Min(i), Max(i))

Next 1

For i=1 To NumberQfClients
E=E+E[i]

Next i

Figure 5.3: Parallel exponent evaluation server

would be performed in parallel by all (N) computers participating in the com-
putations. The overall computing time would be reduced and, depending on
the nature of the problem, a potential speed-up of IV could be achieved.

In order to evaluate the functionality and applicability three engineering ap-
plications were developed and run on the cluster. Implementation details will

follow in the sections below.

5.1 Matrix Multiplication

Matrix multiplication algorithm is a CPU intensive task, hence a good can-
didate for performance evaluation of shared and distributed memory parallel
computers [51].

In section 2.5.2 the product of two matrices was defined as [C] = [A4][B] and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 74

the elements of [C] were defined as:

Cig = i A; 1By j
k=1
where n is the column dimension of [A] and the row dimension of [B]. That is,
the Cj; element is obtained by adding the product of individual elements from
the i row of the first matrix [A] by the j** column from the second matrix
[B] [24, pp 206-207]. The above definition states that the multiplication of
two matrices can only be performed if the first matrix has as many columns
as the number of rows in the second matrix. Thus, if [4] is an m x n matrix
[B] could be an n x [matrix. The resulting [C] matrix would have dimension

of m x [.

5.1.1 Sequential Algorithm

A sequential matrix multiplication algorithm was presented in section 2.5.2.
We reproduce it here for reference. The algorithm uses three nested loops that
traverse each row of matrix [A] and each column of matrix [B]. The algorithm

is illustrated in the pseudocode listed in figure 5.4.

For i=1 To m
For j=1 To 1
For k=1 To n
Clilfjl=Clil1[j]1 + A[i1[x1 x BIk][j]
Next k
Next j
Next i

Figure 5.4: Sequential matrix multiplication algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 75

5.1.2 Parallel Algorithm

The sequential algorithm described above performs m x ! X n independent
multiplications. The order in which each set of multiplications takes place
does not affect the final result. The result could be obtained by performing
the multiplications in parallel by one or more independent processors. Fach of
the processors would only need to have access to the particular row of matrix
[A] and to the corresponding column of matrix [B] as well the location where
the result should be stored. Obviously, this is not an optimal way to perform
a matrix-matrix product in parallel; however, it results in a good illustration
of the concept. The data are replicated to all participating processors, as it
is quite often the case in many parallel calculations that some data items are
needed in all processors. Replication of this data is more efficient than inter
processor communications [71].

Consider two 2 x 2 matrices:

A A B B
A= . 1n b

Ay Ap By Bao

The result of [A] x [B] could be obtained by performing computations on two

independent processors:

Processor 1 Processor 2
[0
. Bu B Bu B

A A12} = Cn 012] A A22]

0
= Oy Cxn
By By By By

The results of the independent computations can be then combined into one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 76

resulting matrix:

Cun Ci
Cor Oy

This characteristic can be utilized to implement a cluster matrix multiplication

algorithm.

5.1.3 Cluster Implementation

Consider the following cluster infrastructure. There exist N independent com-
puting entities (Cluster Members or CM) capable of performing matrix mul-
tiplications on arbitrarily sized matrices [A] and [B].

There exists a supervising computing entity (Cluster Server or CS) which is
coordinating any computing activities in the cluster. The CS is aware of each
and every CM available for computations. The CS divides the computational
task evenly among all CM’s. This means that data are partitioned and sent
to all CM’s.

Each CM is waiting for data to compute on; when it receives the data (two
matrices), it performs the multiplication of the two matrices. The results of
the computation are sent to the computer where the data originated from
(CS).

The CS receives all results and combines them into one logical entity that

could be stored for later analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS

Cluster Server Pseudo Code:
Read Matrix [A]n .
Read Matrix [Bln,n
Fori=1ToN

Connect to Cluster Member ¢

Send [Aln/nn

Send [Blnn

Disconnect from Cluster Member ¢
Next 4
Fori=1To N

Connect to Cluster Member ¢
Receive [Cln/nn
Disconnect from Cluster Member ¢
Next ¢
Store [Clnn

Cluster Member Pseudo Code:
Do

Listen for Connection from Cluster Server
Connect to Cluster Server
Read Matrix [A]mx
Read Matrix [Blnn
Multiply [Almna[Blnn
Connect to Cluster Server
Send Result [C]m.n

Disconnect from Cluster Server

End Do

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

CHAPTER 5. CLUSTER APPLICATIONS

To demonstrate the above algorithms we will perform a multiplication of

two 4 X 4 matrices on a cluster with four CM’s. Consider two matrices:

All
A21
A31
A41

The CS needs to partition the data and send it to the participating CMs. Each

A12
A22
A32
Ag

Ass

CM will receive one row of [A] and the entire matrix [B]:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS

CM 1.

Y B
A= Ay Ag Au Au|.B=

CM 2:

- Bxn
A2= Ay Ay A Axn , B =

CM 3:

A3= Ag Az Az Ay |,B=

CM 4.

. By,
Ad = Ay A A A44],B:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By

Bss
By

By
Ba
Bsa
By

By
Ba
Bsy
By

Bis
Bos
Bss
By

Bis
Bas
Bss
Bys

Bas
Bgs
Bys

Bis
Bos
Bas
Buas

Bl4
Bos
Bs,
By

By
Bay
By
By

B14

By,
Bay
By

79

CHAPTER 5. CLUSTER APPLICATIONS 80

Each CM will then multiply the matrices it has received and then send the
results to the CS:

CM 1:
]
Cl= Cin Cu Ci 014]
CM 2:
0
C2= (Cy Coy O 024]
CM 3:
0
C3= Cu Cn Ca Ca |
CM 4:

C4= Cun Cp Cisz Cu

The CS will agssemble the individual results into one matrix:

0 .

e Ci Cr2 Cis Cu

302 Cy Oy Co Oy
. —

DC3 Cs1 Csp Csz Cxy

C4 _041 Cyr Cu 044_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CuAPTER 5. CLUSTER APPLICATIONS 81

5.1.4 Concluding Remarks

The algorithm has been implemented in the C programming language (see
the listings in the Appendix). The correctness of its operation was tested by
running several multiplications of a randomly generated matrix by an identity
matrix. We know that the result of any matrix multiplied by an identity ma-

trix is the original matrix [67, Page 713]:

Where [A] is any matrix and [I] is a square matrix, all of whose elements are

0 except for the diagonal elements which are 1:

00 0]
100
010
00 1]

Iys =

3

oD O e

The results of the multiplication were then compared to the original random

matrix. The distributed matrix multiplication worked correctly in all cases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CuAPTER 5. CLUSTER APPLICATIONS 82

5.2 2DFFT

We stated in section 2.5.2 that the 2-dimensional finite Fourier transform can
be written as a two dimensional tensor product whose factors are 1-dimensional
finite Fourier transforms. Let [A] be an L x M 2-dimensional complex matrix.
The L x M 2-dimensional transform of [A] denoted by F(Ar,) is the L x M
2-dimensional array [B] defined by:

B, = Al me2mrl/L62msm/M

?

Which can be written in a compact matrix notation:

[B] = F(L)[AJF (M)

This method is called row-column because it computes [B] by a sequence of 1-
dimensional finite Fourier transforms of the rows of [A] followed by a sequence
of 1-dimensional finite Fourier transforms of the resulting columns. The ma-
trix [B] is computed in two stages. First an intermediate matrix of Fourier
transforms of the rows is computed, then a second series of Fourier transforms

of the columus is performed on the resulting matrix.

- - - - Fl: F2:
Ay A - A F1:A;, A - A

An Ap
A9y Ay -+ Aoy Fn:Ay Ay -+ Aoy

.) . = : : i = | Au Ax
Anl An2 e A'rm F [Anl An2 e Ann

B - N) Anl An?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FN:
Aln
A2'n.

CuAPTER 5. (CLUSTER APPLICATIONS 83

5.2.1 Sequential Algorithm

2-dimensional FFT is quite often implemented using a brute force sequential
method. The target matrix is handled on row by row and column by column
basis. The algorithm uses two simple loops that traverse every row and every
column of the matrix. Such an implementation is illustrated in the pseudocode

below:
Read Matrix [A]nm

Fori=1Ton
FFT(Aim)

Next ¢

Fori=1Tom
FFT(A,;)

Next ¢

Store [Aln,m

5.2.2 Parallel Algorithm

This algorithm is very simple and works very well on a single processor. In
order to implement this algorithm in a parallel manner several issues need
to be addressed. Computers store data in memory in a sequential manner.
Multidimensional data structures such as arrays are always mapped ounto a
continuous set of memory locations. For example, a 4 x 4 array will be stored
in sixteen consecutive memory locations. If we assume that each array ele-
ment requires one byte of storage and that the first array element is stored
at memory location M, then the first element of the second row is stored at
M + 4. The first element of the third row is stored at M + 8 and the first

element of the fourth row is stored at M + 12. The following formula is used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 84

to translate high level transcript notation of the element a[i]{j] or matrix A, ,:

alf][j] = Mem Location(a[0][0]) x (z x i) 4+ j

where ali][7] is the value we want to access and ¢[0][0] is the memory location
of the first element of the A, matrix. This of course presents a problem when
a set columus is sent to a remote machine with its own local memory. The set
of columns would be mapped into a set of rows resulting in computations on
the wrong data.

In order to avoid this problem the following solution is proposed. The data
resulting from row FFT computations would be “rotated” in such a way that

columns would become rows and vice versa:

- - - -

An A oo A A - An An
Ay Axp -+ Ay Apng -+ An Ap
) _ _] rotate =)] _
L Anl An2 e Ann i i Ann ot A2n Aln |

When data are rotated we can use the same algorithm to perform the FE'T on
both rows and columns without compromising the integrity of the data.

We recognize that the final result depends on the FFT’s performed on all rows
or columns of the matrix; however, FFT’s of each row or column can be per-
formed independently from each other. This observation leads us to believe
that we could perform FFT’s on distinct rows or columns simultaneously, in-
dependently from each other. Consider a 2-dimensional Fourier transform of

a 2 X 2 matrix [A]:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 85

All A12
A21 A22

Suppose we could use two independent processors to perform the transform
F(Asxs). First we could use each processor to perform 1-dimensional Fourier

transform on one distinct row of the matrix [A]:

ProDcessor 1 Pro[(]:essor 2

F(An 4n)) F(Aa An)

Before computing FFT on the columns of [A] we need to collect the results
and combine them into an intermediate matrix [A]. The intermediate result
matrix [A’] has to be then rotated in such a way that the columns become rows:

N € T A B TS
n A 12 Ap

Then we could use each processor to perform 1-dimensional Fourier transform

on one distinct row of the matrix [A]:

Promcessor 1 Proa:essor 2

() 7 4)

We again collect the results and combine them into one matrix [A"”]. We could
then leave the results in that form or rotate the result matrix [A"] back to the

original form:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 86

" " " "
All 21 11 A12

" 1" " i

12 22 21 22

Rotate

The resulting matrix [A”] would then contain the result of a 2-dimensional

Fourier transform of [A].

5.2.3 Cluster Implementation

Consider the following cluster infrastructure. There exist N independent com-
puting entities (Cluster Members or CM) capable of performing 1-dimensional
fast Fourier transform (FFT) on arbitrarily sized matrix [A] whose dimensions
are a power of 2.

There exists a supervising computing entity (Cluster Server or CS) which is
coordinating any computing activities in the cluster. The CS is aware of each
and every CM available for computations. The CS divides the computational
task evenly among all CM’s. This means that data are partitioned and sent
to all CM’s.

Each CM is waiting for data to compute on; when it receives the data (set
of rows) it performs an FFT on every row of the matrix. The results of the
computation are sent to the computer where the data originated from (CS).
The CS receives all results, combines them into one logical entity, and reor-
ganizes the results in such a way that another series of 1-dimensional FFT’s
could be performed. The reorganized matrix is partitioned and each partition
(set of rows) is sent to all CM’s for computations.

The results are again combined into one logical entity and stored for later

analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CuarTER 5. CLUSTER APPLICATIONS

Cluster Server Pseudo Code:

Read Matrix [A]_{n,m}
For i=1 To N
Connect to Cluster Member[il
Send [Al_{n/N,m}
Disconnect from Cluster Member[i]
Next i
For i=1 To N
Connect to Cluster Member[il
Receive [A’]_{n/N,m}
Disconnect from Cluster Member[i]
Next i
Rotate [A’]_{n,m}
For i=1 To N
Connect to Cluster Member[i]
Send [A’]_{n/N,m}
Disconnect from Cluster Member[i]
Next i
For i=1 To N
Connect to Cluster Member[i]
Receive [A’°] _{n/N,m}
Disconnect from Cluster Member[i]
Next i

Store [A’’]_{n,m}

Cluster Member Pseudo Code:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

CaaPTER 5. CLUSTER APPLICATIONS 88

Do
Listen for Connection from Cluster Server
Connect to Cluster Server
Read Matrix [A]l_{n,m}
For i=1 To n
FFT([A]_{i,m})
Next i
Connect to Cluster Server
Send Result [A’]_{n,m}
Disconnect from Cluster Server

End Do

To demonstrate the above algorithms we will perform a 2-dimensional FFT

on one 4 X 4 data matrix using a cluster with four CM’s. Consider the matrix

[A]4><4:

An A Az Au
Ayy Agg A Ao
Az Asp Asz As
Apn Ap Ap Au

The CS needs to partition the data and send them to the participating CM’s.

FEach CM will receive one row of [A]:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 89

CM 1:
]
Al= Ay A Az Au
CM 2:
O
A2 = Ao Agy Axz Ay
CM 3:
A= Ay Aw An Au |
CM 4

Ad = An Agp Ag A44}

Each CM will then perform FFTs on the rows it has received and send the
results to the CS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 90

CM 1:
|
FA)= Ay, A, Al AL, |
CM 2:
.
F(A2) = A2, A2, A%, Ang}
CM 3:
]
F(A3) = A3, A3, A3, A334]
CM 4;

F(A4) = A4, A4, Ad, A4,

The C8 will assemble the individual results into one matrix:

O _
7 r T
5 AT Ay Ay Ay Ay
. A2 I N Ay Ay Ay Ay
. A3 Ay AL, Ay Aj,
A4 | A A Al Al |

The CS will then rotate the resulting matrix, so that a series of 1-dimensional

FFT’s can be performed on the columuns of [A']:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 91

/ ! 1 ! / ! 7 !
Ay A Ay Ay Ay Ay Ay Ay
A/ ’ AI / AI AI ! AI

21 ‘igg flag Aoy 12 “log Lfzg Ay

Rotate —_

7 / 14 7 7 7 7 I

31 4i3g 33 gy Al Ay Ay Al

! 7 / 7 7 ! 7 !

| 441 Ay A Al] | Ay Ay Az Al]

The resulting matrix [A'] will then again be partitioned and its rows sent to

participating CM’s:

CM 1:
O
Al'= Ay Ay Ay Aiu]
CM 2:
]
A2 = o A Ap 512}
CM 3.
0
AY = 13 Ay Aps 5;3]
CM 4:
O
AY = oAby Asy 24}

Each CM will then perform an FFT on the rows it has received and then
send the results to the CS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 92

CM 1:
O
F(AL) = n Ay Ag Zl}
CM 2:
O
FAY)= AL, Al AL A |
CM 3:
1
Fa¥)= Al AL Al Al
CM 4:
0
F(AY) = T Ay Az Al

The CS will assemble the individual results into one matrix:

il .

,) -
A Al AL ALAY
A ||| A
A3’ T3 Ay Az Al
Ad4Y H . W Ab, AL Al]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 93

5.2.4 Concluding Remarks

The algorithm has been implemented in the C programming language (see
the listings in the Appendix). The correctness of its operation was tested by
running a series of 2-dimensional FFT’s on several matrices whose dimensions
were a power of two. The matrices contained the data of a 2-dimensional pulse
function. It is known that the values of all elements of a 1-dimensional FFT
of a pulse function are close to zero, except for the value of the first element,
which is close to the sum of all elements of the original data matrix:

& 0
[Alixa= 111 1|=F(A)= 4 0 0 0]

If we then perform a series of 1-dimensional FF1’s on the rows of a square
matrix [A] we will obtain a matrix whose entries are all 0 except for the entries

in the first column:

(111 1) (400 0]

1111 400 0
[A]4X4 = = frmvs([A]) =

1111 4000

1111 400 0]

Performing a series of 1-dimensional FFT’s on the columns of the matrix
will result in a matrix whose elements are all 0 except for the value of Aj;

which will again be the sum of all elements of the first column:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 94

00 0] 16 0 0

4 0

4 G 0 0O 0 000
[A]4x4 = = fcolumns([A]) =

4 0 0 0 0 00 0

(4000 [0 00 0]

We could use this property of the Fourier transform to test the correctness
of the computed results. After each computation of the 2-dimensional FFT of
a square pulse function we test if the value of the first element is equal or very
close to the product of the matrix’s dimension. The values of the rest of the
elements should be close to 0.

The distributed 2-dimensional FFT worked correctly during all tests con-
ducted.

5.3 Electric Field Approximation

Section 2.5.2 illustrated the algorithm for electric field approximation that can
be performed on a digital computer.

Let [A] be an n x m 2-dimensional matrix representing a plate on which we
want to calculate the electric field. The potential values to which the plate
is subjected are stored in the first (top), last (bottom) rows and first (left)
and last (right) colurans. The initial values of the grid matrix are set to the

average value of the potentials the plate is exposed to:

A = Ptop -+ Pbottom +]Dleft + Pright
(A 4

(5.2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 95

After the matrix has been initialized one can proceed and calculate the grid

values using the algorithm presented in section 2.5.2:

Az,J — +1,7 + 1,7 Z a]+1 + 2 1 (5.3)

5.3.1 Sequential Algorithm

Mesh calculation algorithm is frequently implemented in a sequential manner
using three nested loops. The target matrix is handled on an element by el-
ement basis. The outer loop of the algorithm is used to perform a number
of iterations required for satisfactory convergence of the values of the grid
elements. The two inner loops traverse every row and every column of the
matrix and allow for the calculation the values of the grid elements. Such an

implementation is illustrated in the pseudocode below:

Initialize Matrix [A]_{n,m}
For i=1 To MaxIteratioms
For y=1 To n-1
For x=1 To m-1
A {x,yr=(A_{x+1,y+A_{x-1,y}+A_{x,y+1}+A_{x,y-11) /4
Next x
Next y
Next i

Store [A]l_{n,m}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 96

5.3.2 Parallel Algorithm

The sequential algorithm illustrated in section 5.3.1 works very well on a single
processor (NUMA) computer; however, in order to implement this algorithm
in a parallel manner several issues need to be addressed. Distributed imple-
mentation of this algorithm requires partitioning of the grid and assigning the
partitions to every computer participating in the computation. This partition-
ing and assignment of the data is usually done by one machine, which is aware
of all the machines participating in the computations.

Suppose we could use two independent processors to perform the mesh calcu-
lations on a n x n matrix A. First we would divide the data evenly and then we

would allocate the data to both processors to perform the mesh calculations:

Processor 1 Processor 2
Al,l et Al,n An/2+1,1 toe An/2+1,n
An/2,1 te An/2,n An,l T An,n

Then we could use each processor to perform one iteration of the mesh calcu-

lation on the data it has access to:

Processor 1 Processor 2

For every element calculate: For every element calculate:

A= A1 j+Ai1 A j1+A -1 A s = Aipr g FAia A HA
i, — 4 gV 4

We would need to repeat the calculations several times in order to obtain a
satisfactory convergence of the grid values. We then collect and combine the
results into the result matrix A'.

The problem with the algorithm is that the mesh values at the boundaries
(rows 1n/2 and n/2+1) will not be calculated as there are no data required to

calculate them. Since the data reside on machines physically distinct from each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 97

other, additional communications are required in order to ensure the correct
grid values at the partition boundaries. The communications can either take
place among the participating machines or they can be performed between the
participants and the machine acting as a server. A distributed algorithm that

produces correct grid values of the matrix and the boundaries is listed below:

Processor 1 Processor 2

For every element calculate: For every element calculate:

Ai’j — Ai+1,j+Ai-—1,j1—Ai,j+1+Ai‘j~1 Az,j — A¢+1,j+Aq‘,_1,j1—Ai,j+1+Ai,j_1
SendRows(A1, Ag, Anj2—1, Ans2) SendRows(Ay /2, Anj2+1, An-1, An)
ReceiveRows(A1, Az, Anja—1, Ans2) ReceiveRows(A, /2, Anj2+1, An-1, An)

In order to simplify the cluster member algorithms and minimize the delays
caused by the computations of the grid values at the boundaries, the server-
participant type of communications has been implemented. The participant’s
communications algorithm has been simplified, as it is the server that assigns
and coordinates the data flow to and from the participants. The server is also
aware of the boundaries resulting from the partitioning of data. Communica-
tions can be performed either in a synchronous or an asynchronous manner.
Since all the participants had the same CPU and the number of data points
required to compute the grid values at the boundaries is only 4N per par-
ticipant, a synchronous type of communication was chosen and implemented.
Each processor sends the two top (A1, 42) and bottom (A,_1, A,) rows to the
computer that assigned the data to them. That computer performs the cal-
culations of the grid values at the boundaries. The computed grid values are

sent back to the computers they originated from.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 98

5.3.3 Cluster Implementation

Consider the following cluster infrastructure. There exist N independent com-
puting entities (Cluster Members or CM) capable of performing grid values
approximations on an arbitrarily sized matrix [A].

There exists a supervising computing entity (Cluster Server or CS) which is
coordinating any computing activities in the cluster. The CS is aware of each
and every CM available for computations. The CS divides the computational
task evenly among all CM’s. This means that the data are partitioned and
sent to all CM’s.

Each CM is waiting for data to compute on; when it receives the data (set
of rows) it computes the values the grid elements. After the computations
are complete CM sends the values of the boundary rows ({ and n or top and
bottom) together with the values of the neighbouring rows (2 and n-1) to the
cluster server for ‘mending’. The mended rows are used in the next round
of computations. The computations are repeated a predetermined number of
times specified by the CS. Finally, the results of the computation are sent to
the computer where the data originated from (CS).

The CS receives all results and combines them into one logical entity repre-
senting the electric field values on the given plate.

Cluster Server Pseudo Code:

Read Matrix [Al_{n,m}

For i=1 To N
Connect to Cluster Member[i]
Send [A]_{n/N,m}

Disconnect from Cluster Member[i]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CuAPTER 5. CLUSTER APPLICATIONS

Next i
For i=1 To NumOfIterations
Connect to Cluster Member[i]
Receive [B]_{n/4,m}
Disconnect from Cluster Member[i]
Mend [B]
Connect to Cluster Member[i]
Send [B]_{n/4,m}
Disconnect from Cluster Member[i]
Next i
For i=1 To N
Connect to Cluster Member[i]
Receive [A]_{n/N,m}
Disconnect from Cluster Member[i]
Next i

Store [A]_{n,m}

Cluster Member Pseudo Code:

Do
Listen for Connection from Cluster Server
Connect to Cluster Server
Read Matrix [A]_{n,m}
For i=1 To NumberOfIteratiomns
Calculate Grid(A)
Connect to Cluster Server

Send [A]_{n/4,m}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

CHAPTER 5. CLUSTER APPLICATIONS

Disconnect from Cluster Server
Connect to Cluster Server
Receive [A]_{n/4,m}
Disconnect from Cluster Server
Next i
Connect to Cluster Server
Send Results [A]_{n,m}
Disconnect from Cluster Server

End Do

100

To demonstrate the above algorithms we will calculate the potential values of

a 16 x 16 grid matrix using a cluster with two CM’s. Consider the matrix

[A]lﬁxlei
(A1,1 A1,2
A A
A= '2,1 2,2
| A16,1 A16,2

Aiis Avs
As1s Ao

Ajs16 Ass s]

The CS needs to partition the data and send them to the participating CM’s.

Each CM will receive eight rows of [A]:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CuaPrTER 5. CLUSTER APPLICATIONS

CM 1:

Al: ‘7 .!

CM 2:

A9,1 A9,2

49 — A1.0,1 A1.0,2

| A1 Assp

Al 15

]

A2 15

El

AS 15

2

Ag1s Agis

A10,15 A10,16

Assi6 Ause |

101

Each CM will then perform one iteration of the calculations on the rows it

has received:
CM 1:

ComputeGridValues(Al) =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Arg A1z
! !
22 -+ Ao
7 7
72 - Ans
Asgy As1s

Ais
Agig

A816
A816

CHAPTER 5. CLUSTER APPLICATIONS

CM 2:

ComputeGridV alues(A2) =

102

7
A15,15

A15,16

After every iteration the CM’s will send the boundary rows containing the in-

termediate results of the calculations to the CS for adjustment:

CS:

MendBoundaries(TempA) =

Ary
Asg;
Ag1
Azo1

/
72

/
82

7
9,2

)
10,2

s Asie
/815 Asig
6,15 A9,16
/10,15 A10,16 i

The corrected boundaries are then sent to the CM’s for the next round of com-

putations. The operation is repeated N times (number of iteratation or until

a satisfactory convergence of the results is obtained). After all iterations are

completed the CS will assemble the individual results into one matrix:

]

L

A1"
A2"

T T
1,1 1,2

n k13
A2,1 A2,2

n n
] Afen Also

7
A1,15

n
A2,15

n
A15,16

n
A1,16

n
A2,16

n
16,16 |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 103

5.3.4 Concluding Remarks

The algorithm has been implemented in the C programming language (see the
listings in the Appendix). The correctness of its operation was tested by run-
ning a series calculations of potential distribution on a plate by one computer
and by multiple computers and then comparing the results.

The distributed version of the algorithm worked correctly during all tests con-
ducted. A sample output of the computed results by the cluster is plotted in
figure 5.5.

Potential

[
”iih’“m

HiEEigig),
13181011

’!lu
1lidis 1Ly}

Figure 5.5: Mesh calculations

5.4 Multitreaded Server Applications

The Cluster Server coordinates all computations in the designed cluster. The
server is the only computer aware of all cluster members and thus capable of
utilizing their resources. During the design particular care was paid to the
development of an environment that would not be restricted to a specific con-
figuration. The distribution of work is determined at the run time. The server,

depending on the number of participating cluster members, creates a working

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 104

thread for each cluster member participating in the computation. The thread
is given a fraction of the data to be computed on and then independently
conducts communications with the assigned cluster member. The number of
working threads is restricted only by the memory constrains of the server.
When all cluster members finish the computations, their results are collected
and the performance of the cluster is stored in a database for future analysis.
No fault tolerance has been implemented in the development system. The
server, however, is capable of recognizing the fact that a cluster member is
not responding. Upon discovery of a problem the server notifies the operator

about the cluster member causing a problem.

5.4.1 Matrix Multiplication

In section 5.1.3 a pseudocode for the cluster server was described. A clarifi-
cation is needed at this point. Without the use of threading techniques the
parallel algorithm performance would be impaired if it were performed by the

server in a sequential manner as listed below.

Cluster Server Sequential Pseudo Code
The two loops responsible for sending and receiving data are sequential by

their nature. The algorithm should be implemented in a more efficient man-

ner:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 105

For i=1 To N

Connect to Cluster Member[il

Send [A]{n/N,n}

Send [B]l{n,n}

Disconnect from Cluster Member[i]
Next i
For i=1 To N

Connect to Cluster Member[i]

Receive [C}{n/N,n}

Disconnect from Cluster Member[i]
Next i

Figure 5.6: Sequential Server Code

Cluster Server Multithreaded Pseudo Code:

Fori=1To N
Create Thread ¢ Respounsible for Communicating
with Cluster Member ¢

Next ¢

Fort=1To N
Wait for Thread 4 to Finish

Next i

This algorithm will attempt to communicate with all participating cluster

members simultaneously and the throughput of the server will increase.

5.4.2 2D-FFT

The 2-D FFT parallel algorithm listed in section 5.2.2 suffers from the same
problem as the matrix multiplication algorithm described in the previous sec-
tion. A multithreaded version was developed in order to enhance the perfor-

mance of the server.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. CLUSTER APPLICATIONS 106

5.4.3 Shared Memory Access

The use of threaded techniques improves the throughput of the server. How-
ever, communication with multiple clients simultaneously complicates memory
management, as simultaneous accesses to shared variables can take place. We
know that on a shared memory computer each CPU can access any memory
location. It is possible that the running threads might attempt to update the
shared memory areas simultaneously. The usage of locks was considered for
synchronizing access to the shared memory. Such a protection is always ex-
pensive [91]. It can be seen from the server program listing that each thread
works only the memory area it was assigned to work on. Any updates in that
area would only be performed by one thread at a time; hence it is safe to allow

the threads access to the shared memory at any time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Experimental Data and Results

The primary objective of the conducted experiments was to determine the
cluster’s functionality and applicability. Several synthetic and practical appli-
cations have been developed and used to obtain the cluster’s characteristics.
Synthetic applications were used to obtain the cluster’s I/O characteristics and
dependencies. In particular the system latency and the I/O throughput were
determined. Practical applications were used to obtain the raw performance
(wall time clock SpeedUp) of the system. The following sections demonstrate

sample results of all conducted experiments

6.1 System Latency

System latency has been defined in section 2.1.1 as the amount of time required
for the system to setup computations. The implemented cluster is intercon-
nected using an Ethernet network, hence its latency is strongly dependent
on (related to) the latency of the interconnecting medium. The latency of

the system was determined experimentally by recording the data transfer val-

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. EXPERIMENTAL DATA AND RESULTS

Time [mSec]

Teotal -v--en- T rec Transfer !
25 1200
e | 1000
20 — 1
. [
R Y LA
) i \ }v’ ;”! !.,' i 1 800
15 //"\ ! et
1 jj N + 600
o Y
10 +———A Ly
e X . - 400
vd 2 5 ./”
:J A’_ A
.l
5 /5 e 1 200
Q0 T ; 7 y T " . T 0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Data Size [Byte]

Transfer [KB/Sec]

Figure 6.1: Machine latency on 10MBit network

Network Latency
[ms]
10 Mbit 4
100 Mbit 3

Table 6.1: Network latency

108

ues of various batches of data. The data were sent from the cluster server

to a cluster member.

The amount of data was increased until the transfer

rate reached its maximum for the given Ethernet technology; 0.97[MB/s| and
8[MB/s| for 10MBit and 100MBit Ethernet networks, respectively. The slope

of the curve was approximated and the results were interpolated to determine

network latency (figures 6.1 and 6.2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. EXPERIMENTAL DATA AND RESULTS

109

‘ Ttotal ------- Tree ——— Transfer 5
10 ‘ 7000
o o - SN R 77 6000
8 —] S
7 [| 15000
o ~ ' K>
o 6 o 72
<z el | 1 4000
é 5 // \\; @_,
Q g i St
E 4 N ad .‘ } 3000 <2
= \ | £
3 v ‘ : A | ; r""’\»/\ &
| 1—_’/—-" = 2000
" R N b FTTT Nams +
T e e Total = 14 + 1.99E-04x T 1000
=,
N Trec=047 + 2.12E-04x 0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Data Size [Byte]

Figure 6.2: Machine latency on 100MBit network

6.2 Data Transfer

The computers participating in the experiment are fully independent machines
interconnected via an Ethernet network. It is obvious that the performance
of the cluster will depend on its network performance and data transfer capa-
bilities. Applications that process a lot of data will be subject to the network
performance of the cluster. Applications that perform a lot of processing lo-
cally will be subject to the CPU performances of the cluster participants.

The data required for cluster based computations can be transferred in either
raw or marshaled format. Raw format is simpler to implement; however, the
Marshalled format is safer and works regardless of the hardware architecture

of cluster participants.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. EXPERIMENTAL DATA AND RESULTS 110

6.2.1 Raw Data Transfer

Raw format implementation does not translate the data in traunsfer into a
format that is hardware architecture independent. The receiver will receive
and interpret the received data the same way the sender sends, it provided
both the receiver and the sender run on the same hardware architecture (Ix86
to Ix86, SUN to SUN, etc.)

This method is relatively safe, provided the designer uses only one type of
hardware, or if the hardware architecture implementation is the same on all

machines participating in the cluster.

6.2.2 Marshalled Data Transfer

In order to ensure that the data in transfer will always be interpreted correctly,
regardless of the hardware architecture of the sender and receiver, one would
need to convert the data to be transferred to a common network format. The
sender converts the data from its hardware format to the network format. The
data then are sent to the receiver which in turn will convert the data from
the network format to its native architecture format. Each transfer requires

additional processing of both the sender and the receiver.

6.2.3 Cluster Data Transfers

The star infrastructure that was used to implement the cluster is subject to
Ethernet technology performance. The Ethernet technology does not handle
simultaneous accesses linearly; however, for the six cluster member configura-
tion, its performance does not degrade drastically.

Several experiments were conducted in order to determine if the network uti-

lization had any impact on overall performance of the cluster.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. EXPERIMENTAL DATA AND RESULTS 111

2500

. 2000

g —E—1CM
£ 1500

g e 2CM
[

g 1000 - —A—3CM
=

E ~3— 4CM

500 -

01 03 07 12 19 27 37 49 62 76 92 110
Data Transferred [MB]

Figure 6.3: Transfer Rate on 10MBit Network

Figures 6.3 and 6.4 show execution times and effective transfer rates of four

cluster configurations connected via a 10MHz and 100MHz Ethernet network.

6.3 Matrix Multiplication

The distributed matrix multiplication program described in section 5.1 has
been run on the cluster and the execution times for various problem sizes have
been recorded. The SpeedUp of the cluster has been calculated and the results

are shown in figures 6.5 and 6.6.

6.4 2D FFT

A popular engineering application, namely the 2D-FFT was chosen for the

second performance evaluator of the cluster. The algorithm used for computing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. EXPERIMENTAL DATA AND RESULTS

40000

30000

20000

10000

Transfer Rate [MB/s]

0 ;
0.1

T

T T T

067 19

T T T T T T T T T T T

37 62 92 129 172 220
Data Transferred [MB]

—5— 1CM
e 2CM
~#--3CM
—¥—4CM

Figure 6.4: Transfer Rate on 100MBit Network

SpeedUp

100x100

300x300

T T T ¥ T T

500x500 T00x700 900x900
Matrix Size

—o— 6CM
—ti— SCM
—ie—4CM
36— 3CM
—a-—2CM

Figure 6.5: Matrix multiplication speedup on 10MBit network

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

CHAPTER 6. EXPERIMENTAL DATA AND RESULTS

—¢— 6CM

—&— 5CM
3 4CM
——3CM
—e— 2CM

7

R s

> \A/‘Q‘\,}————A-——m i
. v
é3 / o 3% X
& ¢ 3¢ 3¢ 3¢ 3¢

2_

1_~

O T T T T T T T T T

100x100 300x300 500x500 700x700 900x900
Matrix Size

Figure 6.6: Matrix multiplication speedup on 100MBit network

113

the 2D-FFT in a distributed manner was described in section 5.2. The program

was on the cluster and the execution times for various problem sizes were

recorded. The SpeedUp of the cluster was calculated and the results are shown

in figures 6.7 and 6.9.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. EXPERIMENTAL DATA AND RESULTS

—o— 6CM
= SCM
-~ 4CM
—¢—3CM
—@— 2CM

05

O H T T t T
128128 256x256 S512x512 1024x1024 2048x2048 409634096
Data Set
Figure 6.7: 2D-FFT speedup on 10MBit network
7
6

128x128 256x256 512x512 1024x1024 2048x2048 4096x4096
Data Set

—o— 6CM
e SCM
~H¥—~ 4CM
—%—3CM

| —e—2CM

Figure 6.8: 2D-FFT SpeedUp on 100MBit network

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

CHAPTER 6. EXPERIMENTAL DATA AND RESULTS 115

9
8
7
6
S's
jé; 4
3
2
1
0 T T g ; T
128x128 256x256 512x512 1024x1024 2048x2048 4096x4096
Data Set

Figure 6.9: Large memory 2D-FFT SpeedUp on 100MBit network

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. EXPERIMENTAL DATA AND RESULTS 116

6.5 Mesh Calculations

The third engineering application run on the cluster computed the grid values
of a 2-dimensional mesh. The algorithm used for computing the values of
the grid in a distributed manner was described in section 5.3. The program
was run on the cluster and the execution times for various problem sizes were
recorded. The SpeedUp of the cluster was calculated and the results are shown

in figures 6.10 and 6.11.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. EXPERIMENTAL DATA AND RESULTS

2.5

100x100

O1|IllVltllollll(lltlllll]\#ls

1000x1000 1900 x 1900 2800 x 2800

Data Set

—¢— 6CM
—fy— S5CM
—¥%—4CM
——3CM
g 2CM

Figure 6.10: Mesh calculations SpeedUp on 10MBit network

4] T T
100x100

E AR S EAN RO M Rt My Tt A A S A WS AR SRS AR RN S RN (MY AN St AR

1000x1000

1900 x 1900 2800 x 2800
Data Set

Figure 6.11: Mesh calculations SpeedUp on 100MBit network

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

Chapter 7

Discussion

Several analyses of the collected data were performed. These analyses are

presented in the sections to follow.

7.1 Performance and Scalability

From section 6 we see that the cluster SpeedUp stops oscillating when the
size of the data set becomes large enough (over 50% of the time is spent
on computations, as opposed to I/O operations. In order to determine the
maximum possible SpeedUp of the system, the execution times of the cluster

configurations for the largest data sets were analyzed.

7.1.1 Distributed Matrix Multiplication

The SpeedUp of distributed matrix multiplication for the largest data set is
shown in figure 7.1. The SpeedUp for both 10Mbit and 100Mbit configurations
is a linear function of the number of cluster members.

The SpeedUp of the 10Mbit configuration can be regressed as a linear function

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DISCUSSICN 119

6
5 A
SpeedUp 100 = 0.95%4n // 4
* R?=0.9999 | —a— 100MBit
£ :
% 3 SpeedUp 10 =0.8314n || g 10MBit
|
o R® = 0.9962
2
1
0 g i T T
1 2 3 4 5 6
Computers
Figure 7.1: Large data matrix multiplication SpeedUp
as follows:

SU(n) = 0.8314n (7.1)

Similarly, the SpeedUp of the 100Mbit configuration can be regressed ac-

cording to the following expression:

SU(n) = 0.9594n (7.2)

7.1.2 Distributed 2DFFT

The SpeedUp of distributed calculation of 2DFFT for the largest data set is
shown in figure 7.2. The SpeedUp for both 10Mbit and 100Mbit configurations
is a logarithmic function of the number of cluster members.

The SpeedUp of the 10Mbit configuration can be regressed using the following

equation:

SU(n) = 0.2021 In(n) + 1 (7.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DiIsCuUssION 120

Similarly, the speedup of the 100Mbit configuration can be regressed using

the following equation:

SU(n) = 0.87211n(n) + 1 (7.4)

2.5 e
SpeedUpioo = 0.87211nén) + 1

2
/ R’ =0.9901

o 1.5 .
% " —a— 100MBit
o : SpeedUpi0 = 0.2021HnMm) + 1 10MBit
R*=0.979
0.5
0 T T T T T
1 2 3 4 5 6
Computers

Figure 7.2: Large data 2D-FFT SpeedUp

The SpeedUp for 2D-FFT was observed to be substantially lower for the
largest data sets on the implemented cluster by comparison to the low data
sets. Analyses of the problem determined that some of the cluster members did
not have enough RAM to handle the calculations without extensive swapping.
The amount of RAM in the cluster member computers was doubled and the
experiment involving the calculations of 2D-FFT for the largest data set was
conducted again. The new results of the experiment are shown in figure 7.3.
A super SpeedUp was achieved in the new configuration with a SpeedUp of
7.9 on a six machine cluster. The reason for the super SpeedUp was the

fact that the base (reference) tests for the largest data set were conducted on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DisCUSSION

a cluster member whose memory was barely adequate to store the data on
which it computed. Some minor swapping occurred, which was compensated
by the swapping of the cluster members equipped with less memory. When the

memory of all cluster members was upgraded, in order to eliminate swapping,

super SpeedUp was achieved.

e

//

/

L

SpeedUp
™o w E:s W N ~3 o0

/

—a— 100MBit

Large Mem
—a— 100MBit

~— 1M Bit

1 W

0 T T T T

1 2 3 4
Computers

Figure 7.3: Large data 2D-FFT SpeedUp (Super SpeedUp)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DISCUSSION 122

7.1.3 Distributed Grid Calculation

Grid calculations fall into medium I/O category of cluster calculations. The
speedup of distributed matrix multiplication for the largest data set is shown
in figure 7.4. The speedup model for the 10Mbit configuration is a logarith-
mic function of the number of cluster members. The speedup of the 10Mbit

configuration can be calculated using the following equation:
SU(n) = 0.52551In(n) + 1.0337 (7.5)

The speedup model for the 100Mbit configuration is a quadratic function of
the number of cluster members. The speedup of the 100Mbit configuration

can be accurately regressed on the following quadratic expression:

SU(n) = —0.0373n* 4 0.9531n + 0.0829 (7.6)

SpeedUpio0 = 0.0373n" +0.9531n /

4 2

R =0.9938 /
o 3
3 —t— 100MBit]
g ~s5— 10MBit
v 2 i - - -

SpeedUp10 = 0.5255Ln(n) + 1.0337
R2=0.9912

0 T T T T T

1 2 3 4 5 6
Computers

Figure 7.4: Large data grid calculation SpeedUp

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DISCUSSION 123

7.2 Distributed Matrix Multiplication Model-
ing

The performance modeling of any computer system is a complex, application
and data specific, task. The sections below discuss the developed models for

the cluster’s SpeedUp while performing matrix multiplication.

7.2.1 Discrete Model

The discrete model appears to be well suited for the cluster performing the

computations on various (discrete) data sets.

IO Performance

The implemented cluster uses Ethernet network for member communications.
From section 2.1.1 it is known that data on an Ethernet network are trans-
ferred in Ethernet frames that are later encapsulated by TCP/IP frames. The

developed model includes an 1/O component whose analysis is included below.

Matrix Multiplication I/O Analysis

Distributed matrix multiplication requires relatively low I/O. In order to mul-
tiply two matrices of size N x N the following amount of data needs to be

transferred:

I/O(n, N) = SOF({N* + %?}n +N?) (7.7)

where SOF is the machine size of a floating point number, n the number of
cluster members, and N the number of rows and columns of a V x N square

matrix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DISCUSSION 124

On a network with a finite packet size, equation (7.7) needs to be rearranged
in order to calculate the number of packets required to send the data over the
network:

SOF(N?%) SOF(N?/n) SOF(N?/n)

Packets(n,N) = { A P3 n+{ I PS n+{ 7 P35 n (7.8)

Since the fractional packets cannot be combined, equation (7.8) needs to be
modified to allow the calculation of the actual amount of data sent over the
network. In order to determine the number of packets required to transfer
that amount of data the following calculation is performed:

Actual Packets(n, N) =

= rop(t 2P)y 4 R

SOF(N?/n)
MPS

SOF(N?/n)
Mps "
(7.9)

Hn+ RUp({

where RUp is a round up or ceiling function and MPS is the maximum packet

size for the medium. We could define I/O Performance as

Packets(n, N)

1
Actual Packets(n, N) (7.10)

I/0 Perf(n,N) =

and after the expansion we obtain:

{SOFszz}n_i_{SOF!szng}n_I_{SOF N2{n!}n

I/O Perf(n,N) = MPS MPS . MPS —
RUp({29E01), 4 RUp({EE W21y RUp({EP—FA}(%L; n
7.11

We also define Cluster’s I/0 Performance by comparing the number of packets
required to send the data to one and n cluster members.
In order to calculate the number of packets required to send three N X N

matrices (multiplicands and results) to one cluster member we need to perform

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DISCUSSION 125

the following calculation:

SOF(N?)
PCLCABtS(l,N) = SRUP({W}) (712)
The Cluster’s I/0 Perf would then be:
Packets(1, N)
’ P N)= 1
Cluster’s I/0 Perf(n,N) Actual Packets(n, N) (7.13)
after expansion:
Cluster’s 1I/0 Perf(n,N) =
g 22
RUp({*555H)n + RUp({ 22575 b + RUP({Z2 5755)
§ {—-0—-2 CM
-5 ’ —#—3 CM
& | 4 CM
2 e sCM
: | —%—6CM

1 2 3 4 5 6 7 8 9 10

Matrix Size (x100)

Figure 7.5: Cluster I/O Performance for a distributed matrix multiplication

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DISCUSSION 126

CPU Performance

The implemented matrix multiplication algorithm illustrated in figure 7.6 re-
quires both integer and floating point operations. In order to multiply two

N x N matrices the processor has to perform the following operations:

N3 floating point multiplications [FPM]

3N + N? integer multiplications [IntM]

N3 floating point additions [FPA]

6N + 2N? integer additions [IntA]

int MultiplyMatrix(float *a, int aRow, int aCol, float *b, int bRow, int bCol, float *c)
{
int x, ¥y, Z;
for (z=0;z<aRow;z++){
for(y=0;y<bCol;y++){
*(c+(z*bCol+y))=0;
for(x=0;x<aCol;x++)
*(c+(z*bCol+y)) += *(at+(z*aCol+x)) * *(b+(x*¥bCol+y));
¥
}
return z*y*x;

}

Figure 7.6: Matrix multiplication algorithm

Cluster based, or distributed, matrix multiplication requires partitioning of the
data among all of the participating cluster members. The data partitioning
algorithm is illustrated in figure 7.7.

The simple algorithm allocates % rows of matrix A as well as N rows of

matrix B to each cluster member. The last cluster member is assigned either
N

n

rows of matrix A or RU p(%) rows in the instance when N does not evenly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DISCUSSION 127

offset = 0;
for (membercount = 0; membercount<n; membercount++){
cmData [membercount] .matrizxh = matrixA + offset; //move pointer to desired row of A
cmData [membercount] .matrixB = matrixB; //move pointer to the first row of B
if (membercount < n-1) //allocate number of rows of array A
cmData [membercount] .arrdims[0] = N/n; //integer division of the array
else //if data does not divide evenly allocate the reminder to the last machine
cmData[membercount] .arrdims[0] = N - (N/n*(n-1)); //reminder
cmData[membercount] .arrdims{1] = N; //allocate number of columns of array A
cmData [membercount] .arrdims{2] = N; //allocate number of rows of array B
cmData [membercount] .arrdims [3] N; //allocate number of columns of array B
cmData[membercount] .result = resultmatrix + offset; //move pointer to desired row of C
offset += Nx(N/n); //increment pointer offset for next cluster member

Figure 7.7: Data partitioning algorithm

divide by n. The number of CPU intensive operations performed by the cluster

will then be:
CPUOps(N) = FPM(N) + IntM(N)+ FPA(N) + IntA(N) (7.15)

The maximum number of operations each cluster member will perform will

then be:

MazCPUOps(n, N) = FPM(RUp(g—))—I—IntM(RUp(%))JrFPA(RUp(—g))+IntA(RUp(N)

n

(7.16)
The theoretical CPU SpeedUp of the cluster will then be:
CPUOps(N)
d = 7.17
CPU SpeedUp(n.N) = 3BT 0ps (0, V) (7.17)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DISCUSSION 128

and after expansion:
CPU SpeedUp(n,N) =

Nipuy + (BN3+ N3 neas + Nip s + (BN? +2N?) 144
(RUP(Z)%par + B(RUD(EYS + (RUD(X)) 1nens + (RUP(E)3p 4 + (6(RUD(Z)3 + 2(RUP(E)2) 1104
(7.18)

Cluster Performance

The cluster’s performance is a function of several variables: cluster size, data
size, setup time or latency, communications or 1/O performance, and CPU
performance. I/O performance and CPU performance have been determined
in the previous sections. The discrete model of the system’s performance
while performing matrix multiplications can be determined using the following

relation:

1 CM Execution Time(N)
n CM Execution Time(N)

ClusterPerf(n,N,IO,CPU) = —SystermnLosses(n, N)

(7.19)

where

1 CM Execution Time(N) = 1CM IO Time(N) + 1CM CPUTime(N)
(7.20)

1 CM IO Time(N) = Packets(1,N) Packet Transfer Time (7.21)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DISCUSSION 129

1 CM CPU Time(N) =

FPM(N)FPMT + IntM(N)IntMT + FPA(N)FPAT + IntA(N)IntAT !
(7.22)

and

n CM Execution Time(N) = nCM IO Time(N) 4+ nCM CPUTime(N)
(7.23)

n CM IO Time(N) = ActualPackets(n,N) Packet Transfer Time (7.24)

After expansion:

n CM CPU Time(N) = FPM(RUp(X))FPMT + IntM(RUp(X)) Int MT

4 FPA(RUp(%))FPAT + IntA(RUp(g—))IntAT

(7.25)
and
2
SystemLosses(n,N) = C% (7.26)
also

where C1 is a network speed constant and Cy is a dataset constant, both

obtained experimentally.

'FPMT: Floating Point Multiplication Time, IntMT: Integer Multiplication Time,
FPAT: Floating Point Addition Time, IntAT: Integer Addition Time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DISCUSSION

Table 7.1: C; and Cy Values

Network/Constant | Cy Cs
10MBit 0.1 § 20000
100MBit 0.01 | 40000

—— Mod2
g M 0d3
s M 0G4
—%— ModS5
—#— Mod6
—a— FExp2
—4— Exp3
s BXD4
s XD 5
—— Exp6

Figure 7.8: Matrix multiplication discrete model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

CHAPTER 7. DISCUSSION 131

7.2.2 Continuous Model

In order to perform continuous modeling of the response of the system one
needs to analyze the cluster as a system that changes in time. The following
considerations could be made when continuous modeling methods are to be
applied.

Let us examine the computational task involving a series of matrix multipli-
cations. The sizes of the matrices increase when the calculations of the last
computation are complete. The total time required to perform the computa-
tions is the sum of the computation times of the varied sized matrices. The
system response is recorded at the end of each iteration and the data is plotted,
as in figures 7.11 and 7.12. The intervals at which the response is recorded

increase with the increase of the data on which the system computes.

Data Transfer

The speed at which the system receives the data required for the computation
plays a critical role in the cluster’s performance. Figure 7.9 illustrates the
average rate at which the cluster receives data. Since the designed cluster used
shared Ethernet network, the transfer rate was decreasing as more machines

were added.

CPU Utilization

Experimental data show that with the increase of cluster size the time spent
on calculations decreases. This is mainly due to system overhead and to the
increased complexity of the scheduling and assignment of the tasks to cluster

members. The CPU utilization was calculated as the ratio of the processing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DISCUSSION 132

9200
9100

9000 1
8900 1 ==

8800 - \
4 \
8700

8600 -
8500

8400 : . .
2CM 3CM 4CM 5CM 6CM
Cluster Members

Transfer Rate [MB/sec]

Figure 7.9: Cluster transfer rate

time to the total time required for the computation.

T
CPUpy = =222 (7.28)
TTotal
Examination of the experimental data shows that, the response of the
cluster performing matrix multiplication often resembles the forced response
of an overdamped system. The overdamped system response can be calculated

as the solution of the second order differential equation:

d?2SU dSU 1
A g +oSU=0 (7.29)

where A, p, and v are now considered as cluster parameters modeling the char-
acteristics and SU is the system SpeedUp.

Equation (7.29) is as a homogenous second-order linear differential equation
with constant coefficients (A, p, v). The characteristic polynomial associated

to (7.29) is:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DISCUSSION 133

0.98 \
0.94 ¢

g \
"E 0.92 Y .
= 0.9 -
S o088
& 0.86
0.84
0.82
C.8 T 1 . r
2CM 3CM 4CM 5CM 6CM
Cluster Members
Figure 7.10: Cluster CPU utilization
9 1
P(s) = As* + ps + p (7.30)
with roots:

2=~ (5P — 5 (7.31)

The forced response of the overdamped system characterized by (7.29) is

of the form [63]:

SU(t) = Ae® + Be™™ + F (7.32)

where A and B are constants derived from initial conditions, namely:

dSU(0+)

e s1A+ 5B (7.33)

SU(0+)=A+ B and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DISCUSSION 134

and SU(0+) = —F and QE%%O_H are obtained experimentally.
Examples of the regression of experimental data on a relation of the type
(7.32) are shown in figures 7.11 and 7.12. The close match of the curve with
our data suggests that the computational cluster may indeed undergo damp
oscillations during its operation. Although this may not always be the case,
a significant number of the experimental plots suggests that. An immediate
conclusion to this observation is that the performance of the computer cluster
may be at times highly dependent on the “response” frequency of the sys-
tem when processing different computational loads. As many experimental
data cannot be regressed with sufficient accuracy on the solution of a damped
oscillation, it follows that normally homogenous equation (7.29) may be too
simple to capture the entire range of observed system response. We only want
to point out that occasionally the simple modeling presented here appears to
be appropriate and that it signals the oscillatory properties of the cluster.
Figure 7.13 gives the values of A, p and -y obtained from the best fit regres-
sion on relation 7.32. A closer analysis of the data revealed some interesting

facts related to parameters A, p and 7.

1. It has been observed that the linear increase in +y is directly proportional

to the increase of memory in the system

Memory(n) = Ky1v(n) (7.34)

2. The linear decrease in p is directly proportional to the decrease of the

effective data transfer rate of the system.

Transfer Rate(n) = p(n) (7.35)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DISCUSSION 135

ol s Recorded Data
— Model

~J
T

»
T

SpeedUp]]
NG

w

N

sy

0 50 100 150
Time[s]

Figure 7.11: Matrix multiplication 5 machine SpeedUp model 100MBit

3. The decrease in A is directly proportional to the decrease in CPU utiliza-

tion of the system. The following relation for A and CPU,; has been

observed:
CPUyir(n) = A(n) (7.36)

The performance increase of the system (SpeedUp) is closely related to all
of those parameters. The model demonstrates that there are areas when it

is possible to predict, with reasonable accuracy the system SpeedUp, as a

function of time, using the observed characteristics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. DISCUSSION

8t » Recorded Data | |
—— Model
7F
B o
i/ @ ¢
=5
=2 |
g4l
Q|
@
3+ |
24]
M
10
|
O I ! ! 1 5 1
0 20 40 60 80 100 120
Time[s]

136

Figure 7.12: Matrix multiplication 6 machine SpeedUp model 100MBit

1
0.95 - W\\\K b T
© 1
3 0.9 o~ ><N—'—
E _ /t/
- P D —
.g' 0.85
o /
0.8
0.75
2CM 3CM 4CM 5CM 6CM
—@-— Bho 0.91 0.88 0.875 0.87 0.86
- Lambda 0.99 .98 0.96 0.93 0.9
—f— Garmma 2 3 4 5 6

Gamma

Figure 7.13: A, p,y values for Matrix Multiplication

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Summary and Conclusions

Following the investigation into parallel computing by means of a variable com-
puter cluster conducted and presented in this dissertation some final comments
are required. Parallel programming is much more difficult than sequential pro-
gramming. Programming for good performance requires much work, especially
in determining a good parallelization. Significant amount of labour is required
to implement and orchestrate parallel programs and debugging such programs
is not a trivial task. The task is difficult because of the interactions among
multiple processes with their own program orders, and because of sensitivity
of timing. Depending on when events in one process happen to occur relative
to events in another process, a bug in the program may or may not manifest

itself at run time in a particular execution.

Our research indicates that computer clusters are viable alternatives to
mainframes for computation intensive applications. Applications that require
little I/O are especially suited for distributed memory clusters, such as the

one that has been designed. The biggest challenge posed by the developed

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8 SUMMARY AND CONCLUSIONS 138

machine was the process of mapping data onto the nodes. Ideally the data
would be evenly distributed so that the whole machine participates in the
computations. At the same time, it is important to position data “close” to
other data it participates into, because communication is very expensive. At
any rate, it takes a fair amount of manual intervention and custom crafting to
develop a code that can run in parallel. Parallelism in an application is often
expressed serially in a fashion that obscures whatever parallelism once existed.
Converting a sequential algorithm to a parallel equivalent involves hard work
and hand tuning. The system designer has to coordinate the activities of the

different processors explicitly, usually through message passing.

The main idea behind the conducted research was to design and build a
distributed computing cluster and to analyze its performance. The emphasis
was put on creating an open platform that could be used for development of
engineering applications requiring greater computing power than regular work-
stations can deliver. Several factors influenced the design of the cluster. The
most notable factors include utilization of standard, off-the-shelf hardware,
adaptation of standard operating system and networking software, scalability
and expendability, high performance to price ratio, and flexibility and ease of
configuration. By building an initial implementation of the distributed com-
puting cluster, hands-on experience has been acquired, which shows that a first
phase distributed system can be built with an acceptable level of functionality.
However, implementing a distributed computing cluster is a challenging task.
The obtained results show that this computing concept is feasible and that it
can be implemented efficiently on low cost hardware. The developed variable
cluster can be used to run engineering applications that require great process-

ing power. Computing kernels for matrix multiplication, 1-D and 2-D FFT,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8 SUMMARY AND CONCLUSIONS 139

and electric field calculator were designed and implemented. While clusters
are built on a regular basis, little research has been done in the modeling of
their performance. Data collected during the experiments were used to de-
velop models of the cluster while performing matrix multiplication in discrete
and continuous domains. Accurate models were developed and compared with

the collected data.

Clusters offer great performance at a low cost. The research indicates that
it is important to match a problem to a machine. Distributed computing re-
quires partitioning of the problem and orchestration of the computations. It
was observed that I/O intensive problems do not benefit from cluster tech-

nologies. A simple formula

TI /O < TFloatingPointOpe'ra,tions

is proposed for a quick assessment of the applicability of the designed cluster
to a given problem. Implementations where more than 50% of time is spent on
I/0 do not benefit from the designed cluster architecture. The ideal candidate
for a cluster application has a computational complexity of O(n?) or greater.
Sample applications include: matrix operations (imaging operations) and grid

operations (simulations).

The collected results obtained from several applications run on the cluster
allowed for the analysis of its performance. Data were used to calculate system
SpeedUp and selected sets of cases served to develop models of the experimen-
tal system. T'wo cluster models, discrete and continuous, were advanced. The

close match of the developed models with our data suggests that the computa-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. SUMMARY AND CONCLUSIONS 140

tional cluster may undergo damp oscillations during its operation. Although
this may not always be the case, a significant number of the experimental
plots suggests that. An immediate conclusion to this observation is that the
performance of the computer cluster may at times be highly dependent on the
“response” frequency of the system when processing different computational

load. The model inherently signals the oscillatory properties of the cluster.

PC clusters are commonly used for conducting scientific calculations. The
absolute performance of such clusters is not attractive compared to massively
parallel processors, because the performance of interconnecting networks is
not good enough, especially with communication intensive applications. How-
ever, a good cost to performance ratio can be achieved in these clusters. Such
systems are interesting as research prototypes, but none of them has been ac-
cepted as a common platform. Distributed memory parallel machines are the
only vehicle for applying many processors to an individual problem. However,
quite often the performance of systems employing multiple processors does not
scale or increase at a satisfactory rate with the number of processors available
for computations. There are many advantages of these systems that can be
custom tailored to an application. The designer is not restricted to generic
implementations available on the market. A custom tailored system can be
used to process data available in any form and anywhere. Computations can
also be scheduled at times when computers are idling. Since the cluster server
is aware of all available cluster members, it can assign the data and collect
the results of computations when they become available. If failure of a cluster
member is detected, it would be possible to reassign the failed cluster mem-
ber’s data to a member that has finished computations. With multiple cluster

members a high degree of redundancy can be achieved. Cluster computing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CEAPTER 8. SUMMARY AND CONCLUSIONS 141

does not come without a price. In order to benefit from the cluster’s power
one needs to develop programs that utilize the hardware efficiently. Frequently
it is difficult, and sometimes impossible, to convert a sequential program into
a parallel equivalent. From our study it follows that problems that require

much communication are not well suited for a cluster implementation.

8.1 Recommendations for Future Work

The developed system performed at a satisfactory level. Several aspects could
be improved or optimized to increase the overall performance of the system.

The sections below address the most notable ones.

The cluster does not utilize the cluster server during computations. The
primary role of the servef, aside from cluster management and task allocation,
was to record accurate measurements of execution times during experiments.
The server of course could be utilized to perform computations on a set of
data. The communications with the cluster members would be reduced and

the overall performance would certainly increase.

The I/O operations are synchronous. The computation is not started un-
less all data are received. Since the data on which the computations are
performed are stored in consecutive memory locations, it would be possible to
start computations as soon as a set of data is received. In addition, the par-
tially computed results could be sent to the server as soon as they are available.
Such optimization would especially benefit the 2D-FFT application, where a

large portion of the execution time is devoted to I/O.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. SUMMARY AND CONCLUSIONS 142

The experiment illustrated the applicability of a distributed computing
cluster to perform computations of the selected engineering application. Very
little optimization has been performed. The primary concern was the correct-
ness of the results. It would be possible to tune the code, especially when it
comes to memory references during matrix multiplication operation. Multi-
threaded routines could also be added for computations and the overlapped

I/0, as discussed above.

Basic fault tolerance has been implemented in the experimental system.
The server is capable of recognizing a crashed cluster member. When such
a problem is detected, the server continues to run and collects results of the
computation from the running cluster members. The server then notifies the
operator about the cluster member that failed and the problem can be ad-
dressed by the operator. However, such failures cause the whole computation
to fail, as there are no results from the machine to which the computation was
assigned. A possible improvement would involve an assignment of the data
belonging to the faulty cluster member to the first cluster member to finish

its assigned computations.

Cluster management tasks, such as cluster member registration and com-
putational power assessment, are performed manually. The operator must also
know how many cluster members will participate in the experiment/calculations
before he/she schedules any computations on the cluster. Such tasks could be
automated. Cluster members could be added and removed dynamically to
and from a database maintained by the server. Machines willing to partic-
ipate in the cluster could be given a pre-registration assessment test whose

results would be used to rank the computational power of the participant. By

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. SUMMARY AND CONCLUSIONS 143

the same token, the removal of cluster members could be automated. For ex-
ample, any failure detected during computations would cause de-registration

of the cluster member.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Cluster Program Listings

The cluster code consists of three parts. The first part contains library func-
tions utilized by both the server and cluster member. The second part con-
tains the client code and finally the third part contains the server code. For
the sake of brevity only the 2D-FFT code for the server and the members has
been included in this appendix. The code for latency, datatrasfer and matrix

multiplication is very similar to the one listed below.

A.1 Cluster Libraries

In order to simplify the development of the cluster server and the cluster meme-
bers several auxiliary libraries have been implemented. The library functions
are responsible for handling socket communications, matrix operations and

database connectivity.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CLUSTER PROGRAM LISTINGS 145

A.1.1 Socket Library

socket.c

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

int readbuffer(int socket, void * buffer, int bytes);

int writebuffer(int socket, void * buffer, int bytes);

// Define an Internet address given a host and port.
setaddr(sp, host, port)

struct sockaddr_in *sp;

char *host;

int port;

struct hostent *hp;
bp = gethostbyname(host); /% searches /etc/hosts */
if (hp == NULL) {
fprintf(stderr, "%s: unknown host\a", host);
exit(1);}
sp~>sin_family = AF_INET;
beopy (bp~>h_addr, &sp->sin_addr, hp->h_length);

sp->sin_port = htons(port);

// Create a stream socket and bind it to the given port number.
int streamsocket (int port)
{

int s;

struct sockaddr_in sin;

sin.sin_family = AF_INET;

sin.sin_ addr.s_addr = INADDR_ANY; /* shorthand for ‘this host’ */
/% htons() comverts the port number to network byte order */
sin.sin_port = htons(port);

s = socket (AF_INET, SOCK_STREAM, 0);

if (s < 0)

error ("socketV);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ArrENDIX A. CLUSTER PROGRAM LISTINGS 146

if (bind(s, &sin, sizeof sin) < 0)
error ("bind");

return s;

// System call failed: print a message and give up.
error(char *msg;)
{

extern char *myname; /* program name */

fprintf (stderr, "/s: ", myname);
perror (msg) ;

exit(1);

// Function readbuffer ensures that the entire expected data has been read
int readbuffer(int socket, void * buffer, int bytes)
{

int count=0;

int br;

while (count < bytes) { /* loop until full buffer */
if ((br = read(socket ,buffer, bytes-count)) > 0) {
count += br; /* increment byte counter */
buffer += br; /* move buffer ptr for next read */
}
if (br < 0) /* signal an error to the caller */
return{-1);
¥

return{count);

// Function readbuffer ensures that the entire expected data has been sent
int writebuffer(int socket, void * buffer, int bytes)
{

int count=0;

int br;

while (count < bytes) { /* loop until full buffer =/

if ({br = write(socket ,buffer, bytes-count}) > 0) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CrLUSTER PROGRAM LISTINGS 147

count += br; /* increment byte counter */
buffer += br; /* move buffer ptr for next read */
}
if (br < 0) /% signal an error to the caller =/
return(-1);
}

return(count) ;

A.1.2 Database Library

sqllib.h

#define MSGSIZ 1
#define BUFFER 1024
#include <stdio.h>
#include <stdlib.h>
#include <mysql/mysql.h>

void exiterr(int exitcode); // MySQL error handling function

int OpenDB(char *DB); // Open Database DB
int CloseDB(); // Close Open Database
int CreateTable(char *name); // Create Table name

int InsertData(char *table, int CPU, int Ether, float Data, float Time, float CPUTime, float IOTime);
int ShowTable(char * table); // Show Table table

MYSQL mysql;
MYSQL_RES *res;
MYSQL_ROW row;

sqllib.c

#include "sqllib.h"

// Create a table for an experiment in the research database
int CreateTable(char *name)
{

char sqlStr[1024];

char definition[1000];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ArPENDIX A. CLUSTER PROGRAM LISTINGS 148

strepy (sqlStr, "CREATE TABLE *);

strcat (sqlStr, name);

strcat (sqiStr, "\n (ExpID INT NOT NULL AUTO_INCREMENT,\n");
strcat(sqlStr, "Date TIMESTAMP(14),\n");
strcat(sqlStr, "HostCPU INT NOT NULL,\n");
strcat(sqlStr, "Ethernmet INT NOT NULL,\n");
strcat(sqiStr, “DataSet FLOAT (10,2) NOT WNULL,\n");
strcat (sqlStr, "RunTime FLOAT (6,2) NOT NULL,\n");
strcat (sqlStr, "CPUTime FLOAT (6,2) NOT NULL,\n");
strcat (sqlStr, "I0Time FLOAT (6,2) NOT NULL,\n");
strcat (sqlStr, "PRIMARY KEY (ExpID))\n");

if (mysql_query(&mysql, sqiStr))

exiterr(3);

return 0;
}
// Print an SQL error code
void exiterr(int exitcode)
{
fprintf(stderr, "%s\n", mysql_error(&mysql));

exit (exitcode);

// Insert a record into a given table
int InsertData(char *table, int HostCPU, int Ethernet, float DataSet, float RunTime, float CPUTime, float I0Time)
{

char sqlStr[1024];

char values[1000];

sprintf (sqlStr, "¥s¥s", VINSERT INTO ", table);
strcat (sqlStr, "(HostCPU, Ethermet, DataSet, RunTime, CPUTime, IOTime)\n"};
sprintf (values, "VALUES (%d, %d, %f, %f, %f, %f)", HostCPU, Ethernet, DataSet, RunTime, CPUTime, I0Time);

strcat(sqlStr, values);

if (mysql_query(&mysqgl, sqlStr))

exiterr(3);

return 0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ArPENDIX A. CLUSTER PROGRAM LISTINGS 149

// Show all records in a given table
int ShowTable(char *table)
{

char sqlStr[1024];

int 1;
sprintf (sqlStr, "%s%s", "SELECT * FROM ", table);

if (mysql_query(&mysql, sqlStr))
exiterr(3);
it (i(res = mysql_store_result(&mysql)))

exiterr(4);

while((row = mysql_fetch_row(res)))
£
for (i=0; i<mysgl_num_fields(res); i++)
printf("ls ", rowlil);
printf("\n");

if (imysql_eof (res))

exiterr(5);

mysql_free_result(res);

return 0;

// Open a database
int OpenDB(char * DB)
{
if (!(mysql_connect (&mysql, "asus2p3","roct",""}))
exiterr(1);
if (mysql_select_db{&mysgl, DB))

exiterr(2);

// Close a database
int CloseDB()

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CLUSTER PROGRAM LISTINGS 150

mysql_close (dmysql);

return 0;

A.1.3 System Library

system.c

#include <stdio.h>

int getCPUInfo(float *);

int getSwaps(int *swapout, int *swapin);

int getCPUInfo(float *mhz)
{

FILE *procfile;

char buffer[80];

smhz = ~1;
procfile = fopen("/proc/cpuinfo","r");
if (procfile == NULL)

return(-1);

while(fgets (buffer, 80, procfile))
if (strncmp(buffer, "cpu MHz", 7)==0){
sscanf (Zbuffer[ii],"%f", mhz);
break;}
fclose(procfile);

return(0);

int getSwaps(int *swapout, int *swapin)
{

FILE *procfile;

char buffer[80], temp(80];

*gygapout = *swapin = ~1;

procfile = fopen("/proc/stat”,"r");

if (procfile == NULL)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ApPPENDIX A. CLUSTER PROGRAM LISTINGS 151

return(-1);

while(fgets(buffer, 80, procfile))
if (strncmp(buffer, "swap", 4)==0){
sscanf (buffer,"%s %d /4", temp, swapin, swapout);
break;}
fclose(procfile);

return(0);

A.1.4 Matrix Library

arrayops.h

#include <stdio.b>
#include <stdlib.h>

#include <sys/time.h>

void PrintMatrix (float *M, int a, int b);

void CreateRandomMatrix (float *M, int a, int b);

void CreateldentityMatrix (float *M, int a, int b);

void CreatelnesMatrix (float *M, int a, int b);

void RotateMatrix (float *M, int rows, int cols);

void PrintMatrix (float *M, int a, int b);

int CompareMatrix (float *M1, float *M2, int a, int b);

int PopulateMatrixzx (float *Mi, float M2, int a, int b);

int MultiplyMatrix(float *, int, int, float *, int, int, float *);

int GetRows(float *Source, int SRows, int SCols, int StartRow, int EndRow, float *Dest);
int GetCols(float *Source, int SRows, int SCols, int StartCol, int EndCol, float *Dest);
void SortMatrix(float *M, int rows, int cols);

float ExpTime(struct timeval, struct timeval);

arrayops.c

#include “"arrayops.h"
// Function for sorting elements of a matrix
void SortMatriz (float #*M, int rows, int cols)

{

int coumnt, i, j;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AprpENDIX A. CLUSTER PROGRAM LISTINGS 152

float temp;
count = rows*cols;

for(i=0;i<count;i++)
for(j=i;j<count; j++)
if(*(M+1) > =(M+j) d{
temp = *(M+i);
*(M+Hi) = #(M+j);
*(M+j) = temp;}
¥
// Function for "rotating" a matrix, rows become cols
void RotateMatrix (float *M, int rows, int cols)
{
float *temp;

int offset, rowcount, colcount,n,i=0;

if((temp = (float *)malloc(rows*colsksizeof(float))) == NULL){
printf("Cannot allocate mem for rotating matrix");

exit(~1);}

for(colcount=0; colcount<cols; colcount++){
offset = cols*(rows-1) + colcount;
for(rowcount=0; rowcount <rows; rowcount++){
*(tempt+i++) = *(Mtoffset);
offset -= cols;}
}
n = rows*cols;
for(i=0;idn;i++)
*(M+i) = *(temp+i);
free (temp);
T
// Function of printing elements of a matrix in a human readable form
void PrintMatrix (float *M, int a, int b)
{
int i, j;
for(i=0;i<a;i++){
for(j=0;j<b;j++)
printf ("%.2£ ", *(M+{ixb+j}));
printf("\n");

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ArrPENDIX A. CLUSTER PROGRAM LISTINGS 153

¥

// Function for multiplying two arbitrarily sized matrices, no error checks

int MultiplyMatrix(float *a, int aRow, int aCol, float *b, int bRow, int bCol, float *c)
{

int %, ¥, 2}

for (z=0;z<aRow;z++){
for (y=0;y<bCol;y++){
*(c+(z*bCol+y))=0;
for (x=0;x<alol;x++)

*(ct+(2¥bCol+y)) += *(a+(z*aCol+x)) * *(b+(x+*bCol+y));

}
return Z¥y*x;
}
// Function for populating a matrix with random data
void CreateRandomMatrix (float *M, int a, int b)
{

int i, number;

number = axb;

srand(time (NULL));

for (i=0;i<number;i++)
*(M+i) = rand();
}
// Function for populating a matrix with 1’s
void CreateOnesMatrix (float *M, int a, int b)
{
int i, number;

number = a¥b;

for (i=0;i<number;i++)
#*(M+i) = 1.0;
¥
// Function for creating an Identity matrix
void CreateldentityMatrix (float *M, int a, int b)
{

int i, number, offset;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AprrENDIX A. CLUSTER PROGRAM LISTINGS 154

number = a*b;
offset = a+i;
*«M = 1;

for (i=1; i<numbexr;i++)
if (i==offset)
#(M+i) = 1; offset += a+l;
else
*(M+1)=0;
}
// Function for comparing the comtents of two matrices
int CompareMatrix (float *M1, float *M2, int a, int b)
{

int i, count;

count = axb;
for(i=0;i<count;i++)
AL (e (Mi4i) 1= x(M2+1))
return -1;
return O;
}
// Function for copying a matrix

int PopulateMatrix (float *Ml, float *M2, int a, int b)

{
int i, n;
n = akb;
for(i=0;i<n;i++)
*(M1+i) = *(M2+1);
return n;
}

//Function GetRows assigns rows of data from matrix source to matrix dest
//It returns number of assigments performed
int GetRows(float *Source, int SRows, int SCols, int StartRow, int EndRow, float *Dest)

{

int offset, counter, end;

offset = StartRow*SCols;
end = EndRow*SCols + SCols;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ArPENDIX A. CLUSTER PROGRAM LISTINGS 155

for(counter=offset; counter<end; counter++)
*(Dest + (counter-offset)) = *(Source + counter);

return (counter-offset);
¥
//Function GetCols assigns columns of data from matrix source to matrix dest
//It returns number of assigments performed
int GetCols(float *Source, int SRows, int SCols, int StartCol, int EndCol, float *Dest)
{

int offset, OffCounter, ElCounter; endElCounter;

int destcount = 0;

float ¢

endElCounter = EndCol - StartCol;
offset = 0;

for(0ffCounter = 0; OffCounter < SRows; OffCounter++){
offset = StartCol + SCols * 0ffCounter;
for(ElCounter = 0; ElCounter <= endElCounter; ElCounter++)
t = *(Dest + destcount++) = *(Source + (offset + ElCounter));
}
return destcount;
}
// Function ExpTime returns expired time between starttv and endtv events
float ExpTime(struct timeval starttv, struct timeval endtv)
{
float ETime=0;
float fraction=0;
ETime = endtv.tv_sec — starttv.tv_sec;
fraction = endtv.tv_usec - starttv.tv_usec;

fraction /= 1000000;

if (fraction < 0)}{
fraction = -fraction;
ETime = ETime - 1 + fraction;
}
else
ETime = ETime + fraction;

return (ETime);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ArpENDIX A. CLUSTER PROGRAM LISTINGS

A.2 2D-FFT Code

A.2.1 Server

clusterserver.c

/*
* clusterserver port

* Cluster Server.

* CS generates data and sends it to clustermembers for computations.
CS collects the results and records the execution time in DB.

* Assumption: all cluster memebers have the same computing power.

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/time.h>
#include <unistd.h>
#include <ctype.h>
#include <pthread.h>

#include <signal.h>

#include "arrayops.h"

#include "sqllib.h"

#define REPETITIONS 10
#define STARTSIZE 128
#define ENDSIZE 4096

int MAXMEMBERS;

char *myname, *port;

void *computeMM(veid =xarg); // Thread function

int ComputeFFT{(float *matrix, int size, float * timeStats);

void signal_handler(int signal);

typedef struct{

int socket; // destination socket

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

ApPPENDIX A. CLUSTER PROGRAM LISTINGS 157

float *matrix; // start address of data matrix

int arrdims([2]; // AX, AY

float volatile *result; // start address of the result matrix
pthread_mutex_t *lock; // lock for locking the access to timeStats
float volatile *timeStats; // I0, CPU

int threadID; // Thread ID

} threadData;

int #*s; // Communication socket variables, allocated dynamically

struct sockaddr_in *sint;
char *cmName[4] = {"cm4","cm3","cm2","cm1"}; //Computer names of cluster members

pthread_t * cmThread; //Thread variables
threadData * cmData;

pthread_mutex_t lock;

main(arge, argv)
char *argv(];
{
int arrdims[2];
int n, zero, rval, counter, membercount, offset, repeat;
struct timeval starttv, endtv;
struct timezone tz;
char table[80];
float *matrix;
float expTime[REPETITIONS], expTimeAve;
float *timeStat, IOTimeAve, CPUTimedve;

signal (SIGPIPE, signal handler); // Try to catch CM fault signals
myname = argv[0];

if (arge < 3) {
fprintf(stderr, "usage: %s port members [tablel\n", myname);
exit(1);}

port = argv(i];

MAXMEMBERS = atoi(argv[2]);

if (MAXMEMBERS > O && MAXMEMBERS < 5){
for (n=0;n<MAXMEMBERS ;n++)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ApPPENDIX A. CLUSTER PrOGRAM LISTINGS 158

printf("%s ",cmName[n]);
printf ("machines that will participate in the experiment\n");}
else{
printf ("Currently only 1 to 4 machines can participate in the experiment\n");
exit(-1);}
g = (int *) calloc(MAXMEMBERS, sizeof(int)); // Initialize Communication sockets
if(s == NULL){
fprintf (stderr, "Cannot allocate memory for communication socketsi");
exit(2);}
sint = (struct sockaddr_in *) calloc(MAXMEMBERS, sizeof(struct sockaddr_in));
if (sint == NULL){
fprintf (stderr, *Cannot allocate memory for communication structs!");
exit(2);}
timeStat = (float *) malloc(2*REPETITIONS#*sizeof (float));
if (timeStat == NULL){
fprintf (stderr,"Cannot allocate memory for time stats!");
exit(2);}
cmThread = (pthread_t ¥)calloc(MAXMEMBERS, sizeof(pthread_t));
if (cmThread == NULL){
fprintf (stderr,"Cannot allocate memory for threads!");
exit(2);}
cmData = (threadData *)calloc(MAXMEMBERS, sizeof (threadData));
if (cmData == NULL){
fprintf (stderr, "Cannot allocate memory for thread data");
exit(2);}
if (argec == 4){
OpenDB("research");
strcpy(table, argv(3]);
printf ("Results will be stored in research.)s table.\n",table);
CreateTable(table); }
else

printf("Results will not be recorded\n");

for{counter = STARTSIZE;counter<=ENDSIZE;counter = counter*2){
for(repeat = 0;repeat<REPETITIONS; repeat++){
#(timeStat + 2%repeat) = *(timeStat + 2%repeat +1) = 0;
arrdims[0] = arrdims[1] = counter;
matrix = (float *) malloc(arrdims[0]*arrdims{i]=*sizeof (float));
CreateOnesMatrix(matrix, arrdims{0], arrdims{11);

gettimeofday{&starttv, &tz);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CLUSTER PROGRAM LISTINGS 159

ComputeFFT (matrix, counter, (timeStat + 2%repeat));
RotateMatrix(matrix, arrdims[0], arrdims[i]);

ComputeFFT (matrix, counter, (timeStat + 2#repeat));
gettimeotday (&endtv, &tz);

*«(timeStat + 2+xrepeat) /= MAXMEMBERS; //Normalize Stats
*(timeStat + 2%repeat+l) /= MAXMEMBERS;

// Correctnes check. Element 0,0 should be ~ A%B
printf("M[0}{0]: %f Should be close to: %f\n",*matrix, (float)arrdims[0]*arrdims[1]);
free (matrix); // free memory for next round of computations
expTine [repeat] = ExpTime(starttv, endtv);
printf("Run: %d Time: %.2f CPU %.2f IO0: %.2f\n",repeat+l,expTime[repeat],*(timeStat+2+repeat+li),
*(timeStat+2*repeat));
}
SortMatrix(expTime, 1, REPETITIONS);
PrintMatrix (expTime, 1, REPETITIONS);
RotateMatrix (timeStat, REPETITIONS, 2);
SortMatrix(timeStat, 1, REPETITIONS);
SortMatrix ((timeStat+REPETITIONS), 1, REPETITIONS);
PrintMatrix(timeStat, 2, REPETITIONS);
expTimeAve = I0TimeAve = CPUTimeAve = O;
for (n=1;n<REPETITIONS-1;n++){
expTimedve += expTime[n];
I0TimeAve += *(timeStat + n);
CPUTimeAve += *(timeStat + REPETITIONS + n);}
if (REPETITIONS>2){
expTimedve /= (REPETITIONS-2);
I0TimeAve /= (REPETITIONS-2);
CPUTimedAve /= (REPETITIONS-2);}
if(argc == 4) // record result in db if required
InsertData(table, 120, 10, (float)arrdims[0]*arrdims[1]l*sizeof(float), expTimeAve, CPUTimehve, IOTimedve);
printf(“"Average Time expired: %.2f CPU: %.2f I0: %.2f\n",expTimeAve, CPUTimeAve, I0TimeAve);}
if(arge == 4){ // Show results recorded in db
ShowTable (table);
CloseDB();}
exit{0);
¥

veid *computeMM(veid *arg)

{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ApPPENDIX A. CLUSTER PROGRAM LISTINGS 160

threadData td = *(threadData *) arg;

float timeStats[3]; //temp buffer for stats

if (writebuffer(td.socket, td.arrdims, sizeof(td.arrdims)) < 6)
error ("writing array dimmensions");
td.arrdims[0] = td.arrdims[1] = O;
if (readbuffer(td.socket, td.arrdims, sizeof(td.arrdims)) < 0)
error ("reading arrdims confirmation");
if (writebuffer(td.socket, td.matrix, td.arrdims[0]*td.arrdims[1]*sizeof(float)) < 0)
error("writing first array");
if (readbuffer(td.socket, td.result, td.arrdims[0]*td.arrdims[1]*sizeof(float)) < 0)
error ("reading result array");
if (readbuffer(td.socket, timeStats, sizeof(timeStats)) < 0)
error("reading time stats");
pthread mutex_lock(td.lock); // obtain lock for shared data
*(td.timeStats) += timeStats[0] + timeStats[i]; // IO in plus IO out
*(td.timeStats+1) += timeStats[2]; // CPU Time
pthread_mutex_unlock(td.lock); //release lock
printf(*[%d] Finished, CPU: %.2f, I0: %.2f\n",td.threadID,*(td.timeStats+1),*(td.timeStats));

int ComputeFFT(float *matrix, int size, float *timeStats)
{
int membercount, offset = 0;
printf(“Connecting on port ¥s\n", port);
for (membercount = 0; membercount<MAXMEMBERS; membercount++){
s[membercount] = streamsocket(0); /* port O means "any port" */

setaddr (4sint [membercount], cmName [membercount], atoi(port));

/* connect a socket using port specified by the command line */
if (connect (s[membercount], &sint{membercount], sizeof (sint [membercount])) < 0) {
error("connecting stream socket");

exit(1);}

printf("0ffset: %d\n", offset);

cmData[membercount] .socket = simembercount];

cmData{membercount] .matrix = (matrix + offset);

if (membercount != (MAXMEMBERS-1))
cmData[membercount] . arrdims[0] = size/MAXMEMBERS;

else

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AprpPeENDIX A. CrLuUSTER PROGRAM LISTINGS 161

cmData {membercount] . arrdims [0] = size - (size/MAXMEMBERS)*(MAXMEMBERS-1);

cmData [membercount] . arrdims{1] = size;

cmData [membercount] .result = {(matrix + offset);
cmData[membercount] .lock = &lock;

cmData [membercount] . timeStats = timeStats;

cmData [membercount] . threadID = membercount;

pthread_create(&cmThread[membercount],
NULL,
computeMM,

&cmData [membercount]);

offset += sizex(size/MAXMEMBERS);

}

for (membercount = 0; membercount<MAXMEMBERS; membercount++){
pthread_join(cmThread [membercount], NULL); // wait for threads to finish
close (s [membercount]);

}

return 1;

}

void signal_handler(int sig)

{

printf ("4 communication error has occured.\n");

A.2.2 Cluster Member

/%
* FFT Cluster Member
* Internet stream server.
* Receives vectors of floats and sends FFT of them
*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#include <signal.h>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CLUSTER PROGRAM LISTINGS 162

#include "arrayops.h"
#define MSGSIZ 1
void signal_handler(int);

char *myname;

int msgs; //socket descriptor

main(arge, argv)
char *argv[];
{
struct sockaddr_in from;
int s, n, fromlen, rval;
int arrdims{2];
float timeStats([3]; //*timeStats;
struct hostent *hp;
char buf [BUFSIZ];
float *matrix;
struct timeval startComp, endComp, startI0, endIO;
struct timezone tz;
float CPU;

int swapOutStart, swapInStart, swapQutEnd, swapInEnd;

myname = argv([0];
if (arge < 2) {
fprintf(stderr, "usage: %s port\n", argvi0]l};
exit(1);}
signal(SIGPIPE, signal_handler); // Try to catch I/0 faults
timeStats{0] = timeStats{1] = timeStats[2] = 0;
s = streamsocket (atoi(argvill));
fromlen = sizeof (from);
if (getsockname(s, &from, &fromien)) {
error("getting socket name");
exit(1);}
printf(“Socket has port #/d\n",ntohs(from.sin_port));
listen(s, 5);
printf ("Raw Transfer Rates\n");
printf("HostCPU | Ethernet | DataSet | RecIOTime | SendIOTime | CPUTime SwapOut SwapIn\n");
for (53) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. CLUSTER PROGRAM LISTINGS 163

msgs = accept(s, 0, 0); /* start accepting connections %/
if (msgs == -1)
error("accept®);
getSwaps (&swapOutStart, &swaplnStart);
bzero(arrdims, sizeof (arrdims));
if (readbuffer(msgs, arrdims, sizeof (arrdims)) < 0){
printf("Error reading arrdims\n");
goto end;}
if (writebuffer(msgs, arrdims, sizeof(arrdims)) < 0){
printf("Error writing arrdims\n");
goto end;}
matrix = (float *)malloc(arrdims[0]*arrdims(1}*sizeof(float));
bzero(matrixz, sizeof(matrix));
gettimeofday (&startl0, &tz);
if (readbuffer(msgs, matrix, arrdims{0]*arrdims{1]*sizeof(float)) < 0){
printf("Error reading matrix\n");
goto end;}
gettimeofday (&endIO, &tz);
timeStats[0] = ExpTime(startIO, endI0);
gettimeofday (&startComp, &tz);
FFT_Matrix(matrix, arrdims[0]}, arrdims[1]);
gettimeofday (&endComp, &tz);

timeStats[2] = ExpTime(startComp, endComp);

gettimeofday (&startID, &tz);
if (writebuffer (msgs, matrix, arrdims([0]*arrdims([1]*sizeof(float)) < 0){
printf("Error writing result.\n");
goto end;}
gettimeofday (&endI0, &tz);
timeStats{1] = ExpTime(startI0, endI0);
if (writebuffer(msgs, timeStats, sizeof(timeStats)) < 0)
printf (*Error writing time stats\n");
end:
getCPUInfo (&CPU) ;
getSwaps (&swapOutEnd, &swapInEnd);
printf("%4Z 100 %d %f %f U%f %4d %d\n", CPU, arrdims[0}xarrdims[i]*sizeof(float),timeStats[0], timeStats{1], ©
swapOutEnd-swapOutStart, swapInEnd-SwapInStart);

free(matrix);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ApPPENDIX A. CLUSTER PROGRAM LISTINGS 164

void signal_handler(int sig)
{
printf("\nl/0 error has occurred (Broken pipe).\nAttempting to resume normal operation.\n");

signal (SIGPIPE, signal_handler);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Marha L. Abell and James P. Braselton. Differential Equations with
Maple V. Academic Press, 2 edition, 2000.

[2] Vikram S. Adve. Analyzing the behavior and performance of parallel
programs. Ph.D. Thesis, University of Wisconsin-Madison, 1993.

[3] Ahmad Afsadi and Nikitas J. Dimopoulos. Efficient Communication
Using Message Prediction for Cluster of Multiprocessors. In
Babak Falsafi and Mario Lauria, editors, Network-Based Parallel Com-
puting, volume 1797 of Lecture Notes In Computer Science. Springer,
2000.

[4] Selim G. Akl. Parallel computation: models and methods. Prentice-Hall,
Inc., 1997.

[5] A.M. Alkindi, D.J. Kerbyson, and G.R. Nudd. Run-Time Optimiza-
tion Using Dynamic Performance Prediction. In Roy Williams
Marian Bubak, Hamideh Afsarmanesh and Bob Hertzberger, editors,
High Performance Computing and Networking, volume 1823 of Lecture
Notes In Computer Science. Springer, 2000.

[6] George S. Almasi and Allan Gottlieb. Highly Parallel Computing. The
Benjamin/Cummings Publishing Company Inc., 2 edition, 1994.

[7] Gene Amdahl. Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities. In Group, edi-
tor, AFIPS’67. AFIPS, 1967.

[8] Frangoisce André, Christine Morin, and Maria-Teresa Segarra. Mech-
anisms for Global Processor and Memory Management on a
NoW. In Peter Sloot, Marian Bubak, and Bob Hertzberger, editors,
High-Performance Computing and Networking, volume 1401 of Lecture
Notes In Computer Science. Springer, April 1998.

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 166

[9] Cosimo Anglano. Predicting Parallel Applications Perfor-
mance on Non-dedicated Cluster Platforms. Internet, 1998.
http: //citeseer.nj.nec.com/anglano98predicting. himl.

[10] Kubota Atushi, Tatsumi Shogo, Tanaka Toshihiko, and Mori Shin-ichiro.
A Technique to Eliminate Redundant Inter-Process Commu-
nications on Parallelizing Compiler TINPAR. In J. Harmanis
G. Goos and J. van Leeuwen, editors, High Performance Computing,
ISHP(C’97, Lecture Notes In Computer Science. Springer, 1997.

[11] Matthias Brune Axel Keller and Alexander Reinefeld. Resource Man-
agement for High-Performance PC Clusters. In Alfons Hoek-
stra Peter Sloot, Marian Bubak and Bob Hertzberger, editors, High-
Performance Computing and Networking, volume 1593 of Lecture Notes
In Computer Science. Springer, 1999.

[12] F. Baiardi, P. Becuzzi, P. Mori, and M. Paoli. Load Balancing and Lo-
cality in Hierarchical N-body Algorithms on Distributed Mem-
ory Architecture. In Peter Sloot, Marian Bubak, and Bob Hertzberger,
editors, High-Performance Computing and Networking, volume 1401 of
Lecture Notes In Computer Science. Springer, April 1998.

[13] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga.
The NAS Parallel Benchmarks. The International Journal of Su-
percomputer Applications, 5(3):63-73, Fall 1991.

[14] Mark Baker and Rajkumar Buyya. Cluster Computing at a Glance.
In Buyya Rajkumar, editor, High Performance Cluster Computing, vol-
ume 1, chapter 1, pages 3-47. Prentice Hall Inc, 1999.

[15] Manjunath Bangalore and Anand Sivasubramaniam. Remote Subpag-
ing Across a Fast Network. In Dhabaleswar K. Panda and Craig B.
Stunkel, editors, Network-Based Parallel Computing, volume 1362 of Lec-
ture Notes In Computer Science. Springer, February 1998.

[16] Pierrick Beaugendre and Thierry Priol. A Client/Server Approach
for HPC Applications within a Networking Environment. In
Peter Sloot, Marian Bubak, and Bob Hertzberger, editors, High-
Performance Computing and Networking, volume 1401 of Lecture Notes
In Computer Science. Springer, April 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY v 167

[17] J. Blasiak and W. Dzwinel. Visual Clustering Multidimensional
and Large Data Sets Using Parallel Environments. In Petfer
Sloot, Marian Bubak, and Bob Hertzberger, editors, High-Performance
Computing and Networking, volume 1401 of Lecture Notes In Computer
Science. Springer, April 1998.

[18] Mathias Brune, Jorn Gehring, and Alexander Reinefeld. A Lightweight
Communication Interface for Parallel Programming Environ-
ments. In Bob Hetzberger and Peter Sloot, editors, High-Performance
Computing and Networking, HPCN’97, volume 1225 of Lecture Notes In
Computer Science. Springer, 1997.

[19] Marian Bubak, Wlodzimierz Funika, and Jacek Mosciniski. Perfor-
mance Analysis Environment for Parallel Applications on Net-
worked Workstations. In Bob Hetzberger and Peter Sloot, editors,
High-Performance Computing and Networking, HPCN’97, volume 1225
of Lecture Notes In Computer Science. Springer, 1997.

[20] Robin Burk, Martin Bligh, and Thomas Lee. TCP/IP Blueprints. Sams
Publishing, 1 edition, 1997.

[21] Duncan K.G. Campbell. A Survey of Models of Parallel Compu-
tation.

[22] Eddy Caron, Olivier Cozette, Dominique Lazure, and Gil Utard. Vir-
tual Memory Management in Data Parallel Applications. In Al-
fons Hoekstra Peter Sloot, Marian Bubak and Bob Hertzberger, editors,
High-Performance Computing and Networking, volume 1593 of Lecture
Notes In Computer Science. Springer, 1999.

[23] Alan Chalmers and Jonathan Tidmus. Practical Parallel Processing.
International Thomson Computer Press, 1996.

[24] Steven C. Chapra and Raymond P. Canale. Numerical Methods For
Fngineers. McGraw-Hill Book Company, 1988.

[25] Helen Chen and Pete Wyckoff. Simulation Studies of Gigabity Eth-
ernet Versus Myrinet Using Real Application Cores. In Babak
Falsafi and Mario Lauria, editors, Network-Based Parallel Computing,
volume 1797 of Lecture Notes In Computer Science. Springer, 2000.

[26] Hsin-Chu Chen, Alvin Lim, and Nazir A. Warsi. Multilevel
Master-Slave Parallel Programming Models. In Joxan Jafar and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 168

Roland H.C. Yap, editors, Concurrency and Parallelism, Programming,
Networking and Security, volume 1179 of Lecture Notes In Computer
Science. Springer, December 1996.

[27] Wai-Kai Chen. The Circuits and Filters Handbook. CRC Press Inc.,
1995.

[28] Eleanor Chu and Alan George. Inside the FFT black box. Serial and
Parallel Fast Fourier Transform Algorithms. CRC Press, 2000.

[29] M. Clement and M. Quinn. Analytical Performance
Prediction on Multicomputers. Internet, May 1993.
hitp: //citeseer.nj.nec. com/clement94analytical. html.

[30] Albert Cohen. Parallelization via Constrained Storage Map-
ping Optimization. In A Fukuda C Polychronopoulos, J. Kazuki and
S Tomita, editors, High Performance Computing, ISHP(C’99, Lecture
Notes In Computer Science. Springer, 1999.

[31] David J. Comer. Computer Analysis of Circuits. International Textbook
Company, 1971.

[32] George Coulouris, Jean Dollimore, and Tim Kinderberg. Distributed
Systems Concepts and Design. Addison-Wesley, 4 edition, 1996.

[33] Michel Courson, Alan Mink, Guillaume Marcais, and Benjamin Tra-
verse. An Automated Benchmarking Toolset. In Roy Williams
Marian Bubak, Hamideh Afsarmanesh and Bob Hertzberger, editors,
High Performance Computing and Networking, volume 1823 of Lecture
Notes In Computer Science. Springer, 2000.

[34] Phyllis E. Crandal and Michael J. Quinn. Block data decomposition
for data parallel programming on a heterogeneous workstation
network. In Proceedings of the Second International Symposium on
High Performance Distributed Computing, July 1993.

[35] Phyllis E. Crandall, Eranti V. Sumithasri, Johann Leichtl, and Mark A.
Clement. Toward Massive Dual-Level Parallelism in Cluster
Computing. Internet. hitp://citeseer.nj.nec.com/239483.html.

[36] Paolo Cremonesi, Claudio Gennaro, and Roberto Marega. I/O Perfor-
mance in Hybrid MIMD+4-SIMD Machines. In Peter Sloot, Mar-
ian Bubak, and Bob Hertzberger, editors, High-Performance Computing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://citeseer.nj.nec.com/239483.html

BIBLIOGRAPHY 169

and Networking, volume 1401 of Lecture Notes In Computer Science.
Springer, April 1998.

[37] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. San-
tos, R. Subramonian, and T. von Eicken. LogP: Towards a re-
alistic model of parallel computation. Internet, May 1993.
http://citeseer.nj.nec.com/culler33logp. html.

[38] David E. Culler and Jaswinder Pal Singh. Parallel Computer Architec-
ture. Morgan Kaufmann Publishers, Inc., 1999.

[39] Hans de Goede. Root over nfs clients & server Howto. Internet,
March 1999. http://www.linuz.org/docs/ldp /howto/Diskless-root-NFS-
HOWTO.html.

[40] Frank Dehne and Siang W. Song. Randomized Parallel List Rank-
ing for Distributed Memory Multiprocessors. In Joxan Jafar and
Roland H.C. Yap, editors, Concurrency and Parallelism, Programming,
Networking and Security, volume 1179 of Lecture Notes In Computer
Science. Springer, December 1996.

[41] Jos Derksen and Harry Van den Akker. Parallel Simulation of Turbu-
. lent Fluid Flow in a Mixing Tank. In Peter Sloot, Marian Bubak,
and Bob Hertzberger, editors, High-Performance Computing and Net-

working, volume 1401 of Lecture Notes In Computer Science. Springer,
April 1998.

[42] C.H.Q Ding, P.M. Lyster, J.W. Larson, J. Guo, and A. da Silva. At-
mospheric Data Assimilation on Distributed-Memory Parallel
Supercomputers. In Peter Sloot, Marian Bubak, and Bob Hertzberger,
editors, High-Performance Computing and Networking, volume 1401 of
Lecture Notes In Computer Science. Springer, April 1998.

[43] Kevin Dowd. High Performance Computing. O'Reilly & Associates, Inc.,
first edition edition, 1993.

[44] D.E. Dudgeon and R.M. Mersereau. Multidimenisional Digital Signal
Processing. Prentice-Hall Inc., 1984.

[45] Trzilla Erald, Baoling Sheen, and Novak V. Nastasic. CHESSBOARD:
A Synergy of Object Oriented Concurrent Programming and
Program Layering. In Joxan Jafar and Roland H.C. Yap, editors,
Concurrency and Parallelism, Programming, Networking and Security,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://cites
http://www

BIBLIOGRAPHY 170

volume 1179 of Lecture Notes In Computer Science. Springer, December
1996.

[46] Ertel. On the Definition of Speedup. In PARLE: Parallel Architec-
tures and Languages Europe. LNCS, Springer-Verlag, 1994.

[47] Dror G. Feitelson. Scheduling Parallel Jobs on Clusters. In Buyya
Rajkumar, editor, High Performance Cluster Computing, volume 1,
chapter 21, pages 519-533. Prentice Hall Inc, 1999.

[48] A.Flores and J.M. Garcia. Improving the Performance of Scientific
Parallel Applications in a Cluster of Workstations. In Erik Elm-
roth Bo Kagstrom, Jack Dongara and Jerzy Wasdniewski, editors, Applied
Parallel Computing, volume 1541 of Lecture Notes In Computer Science.
Springer, 1998.

[49] Giuliana Fogaccia. Parallel Implementation of a Lattice Boltzman
Algorithm for the Electrostatic Plasma Turbulence. In Peter
Sloot, Marian Bubak, and Bob Hertzberger, editors, High-Performance
Computing and Networking, volume 1401 of Lecture Notes In Computer
Science. Springer, April 1998.

[50] Gerald B. Folland. Fourier Analysis and Its Applications. Brooks/Cole
Publishing Company, 1992.

[51] Bertil Folliot and Pierre Sens. Load Sharing and Fault Tolerance
Manager. In Buyya Rajkumar, editor, High Performance Cluster Com-
puting, volume 1, chapter 22, pages 535-552. Prentice Hall Inc, 1999.

[52] Robert Frank and Helmar Burkhart. Application Support by Soft-
ware Reuse: The ALWAN Approach. In Bob Hetzberger and Peter
Sloot, editors, High-Performance Computing and Networking, HPCN’97,
volume 1225 of Lecture Notes In Computer Science. Springer, 1997.

[53] T.L. Freeman and C. Phillips. Parallel Numerical Algorithms. Prentice
Hall, 1992

[54] Antonio Augusto Frohlich, Gilles Pokam Tientcheu, and Wolfgang
Schriéder-Preikschat. EPOS and Myrinet: Effective Communi-
cation Support for Parallel Applications Running on Clus-
ters of Commodity Workstatious. In Roy Williams Marian Bubak,
Hamideh Afsarmanesh and Bob Hertzberger, editors, High Performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 171

Computing and Networking, volume 1823 of Lecture Notes In Computer
Science. Springer, 2000.

[65] Xiadong Fu, Hua Wang, and Vijay Karamcheti. Transparent Network
Connectivity in Dynamic Cluster Environments. In Babak Falsafi
and Mario Lauria, editors, Network-Based Parallel Computing, volume
1797 of Lecture Notes In Computer Science. Springer, 2000.

[56] John Gilbert and Donald Kershaw. Large-Scale Matriz Problems and the
Numerical Solution of Partial Differential Equantions. Oxford University
Press, 1994.

[57] Frank R. Giordano and Maurice D. Weir. Differential Equations a Mod-
eling Approach. Addison-Wesley Publishing Company, Inc., 1991.

[58] R. Grindley, T. Abdelrahman, S. Brown, S. Caranci, D. DeVries,
B. Gamsa, A. Grbic, M. Gusat, R. Ho, and P. McHardy. The NU-
MAchine multiprocessor. Department of Electrical and Computer Engi-
neering, University of Toronto, 2000.

[59] John L. Gustafson. Reevaluating Am-
dahl’s Law. Internet, August 2000.
http: //www.scl.ameslab.gov/Publications /AmdahlsLaw/Amdahls. html.

[60] Issam Hamid and Ferhat Khendek. A Dynamic Evolution for
the Specifications of Distributed Systems. In Joxan Jafar and
Roland H.C. Yap, editors, Concurrency and Parallelism, Programming,
Networking and Security, volume 1179 of Lecture Notes In Computer
Science. Springer, December 1996.

[61] K.A. Havick, D.A. Grove, P.D. Coddington, and M.A. Buntine. A Be-
owulf Cluster for Computational Chemistry. In Roy Williams
Marian Bubak, Hamideh Afsarmanesh and Bob Hertzberger, editors,
High Performance Computing and Networking, volume 1823 of Lecture
Notes In Computer Science. Springer, 2000.

[62] K.A. Hawick, H.A. James, C.J. Patten, and F.A. Vaughan. DISC-
World: A Distributed High Performance Computing Environ-
ment. In Peter Sloot, Marian Bubak, and Bob Hertzberger, editors,
High-Performance Computing and Networking, volume 1401 of Lecture
Notes In Computer Science. Springer, April 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.scl

BIBLIOGRAPHY 172

[63] William H. Hayt and Jack E. Kemmerly. Engineering Circuit Analysis.
McGraw-Hill, Inc., 1993.

[64] Bruce Hendrickson and Tamara G. Kolda. Partitioning Sparse Rec-
tangular Matrices for Parallel Computations of Az and ATvx.
In Erik Elmroth Bo Kagstrom, Jack Dongara and Jerzy Wasniewski,
editors, Applied Parallel Computing, volume 1541 of Lecture Notes In
Computer Science. Springer, 1998.

[65] M. Hobs and A. Goscinski. Remote and Concurent Process Dupli-
cation for SPMD Based Parallel Processing on COWs. In Al-
fons Hoekstra Peter Sloot, Marian Bubak and Bob Hertzberger, editors,
High-Performance Computing and Networking, volume 1593 of Lecture
Notes In Computer Science. Springer, 1999,

[66] Nayeem Islam. Dynamic Partitioning in Dier-
ent Distributed-Memory Environments. Internet.
hitp: //citeseer.nj.nec.com /8664 2. html.

[67] Thomas K. Jewell. Computer Applications for Engineers. John Wiley
& Soms, Inc., 1991.

[68] Ersin Cem Kaletas, A.W. van Halderen, Frank van der Linden, and
Hamideh Afsarmanesh. Evaluation of RCube-Based Switch Us-
ing a Real World Application. In Roy Williams Marian Bubak,
Hamideh Afsarmanesh and Bob Hertzberger, editors, High Performance
Computing and Networking, volume 1823 of Lecture Notes In Computer
Science. Springer, 2000.

[69] M. Kandemir, A. Choudhary, and J. Ramanujam. Restructur-
ing I/0-Intensive Computations for Locality. In Alfons Hoek-
stra Peter Sloot, Marian Bubak and Bob Hertzberger, editors, High-
Performance Computing and Networking, volume 1593 of Lecture Notes
In Computer Science. Springer, 1999.

[70] Richard M. Karp. Parallel Combinatorial Computing. In Jill P.
Mesirov, editor, High Performance Cluster Computing, volume 1, chap-
ter 15, pages 221-238. Capital City Press, 1991.

[71] M.A. Kartawidjaja and A.G. Hoekstra. Memory Efficiency of Par-
allel Programs and Memory Bounded Speedup. In Peter Sloot,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://cites

BIBLIOGRAPHY 173

Marian Bubak, and Bob Hertzberger, editors, High-Performance Com-
puting and Networking, volume 1401 of Lecture Notes In Computer Sci-
ence. Springer, April 1998.

[72] JunSeong Kim and David J. Lilja. Characterization of Communi-
cation Patterns in Message-Passing Parallel Scientific Applica-
tion Programs. In Dhabaleswar K. Panda and Craig B. Stunkel, edi-
tors, Network-Based Parallel Computing, volume 1362 of Lecture Notes
In Computer Science. Springer, February 1998.

[73] Kimmo Koski, Jussi Heikonen, Jari Miettinen, and Jussi Rahola. Re-
sults of the One-year Cluster Pilot Project. In Roy Williams Mar-
ian Bubak, Hamideh Afsarmanesh and Bob Hertzberger, editors, High
Performance Computing and Networking, volume 1823 of Lecture Notes
In Computer Science. Springer, 2000.

[74] Nicolai Langfeldt. NFS Howto. Internet, October 1999.
hitp: //www.linuz. org/docs /ldp /howto /NFS-HOWTO. html.

[75] Pascale Launay and Jean-Louis Pazat. A Framework for Parallel
Programming in Java. In Peter Sloot, Marian Bubak, and Bob
Hertzberger, editors, High-Performance Computing and Networking, vol-
ume 1401 of Lecture Notes In Computer Science. Springer, April 1998.

[76] Xavier Leroy. Linux Threads. Internet, 1997.
hitp: //pauillac.inria.fr/ zleroy/linuzthreads/index.himl.

[77] Th. Lippert, N. Petkov, and K. Schilling. BI.AS-3 for the Quadrics
Parallel Computer. In Bob Hetzberger and Peter Sloot, editors, High-
Performance Computing and Networking, HPCN’97, volume 1225 of Lec-
ture Notes In Computer Science. Springer, 1997.

[78] Th. Lippert, K. Schilling, F. Toschi, S. Trentmann, and R. Tripiccione.
Transpose Algorithm for FFT on APE/Quandrics. In Peter Sloot,
Marian Bubak, and Bob Hertzberger, editors, High-Performance Com-
puting and Networking, volume 1401 of Lecture Notes In Computer Sci-
ence. Springer, April 1998.

[79] Lennart Ljung and Torkel Glad. Modeling of Dynamic Systems. Prentice
Hall, 1994.

[80] Paul A. Lynn and Wolfgang Fuerst. Introductory Digital Processing with
Computer Applications. John Wiley and Sons LTD., November 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://pauillac.inria.fr/

BIBLIOGRAPHY 174

[81] J.M. MacLaren and J.M. Bull. Lessons Learned when Comparing
Shared Memory and Message Passing Codes on Three Mod-
ern Parallel Architectures. In Peter Sloot, Marian Bubak, and Bob
Hertzberger, editors, High-Performance Computing and Networking, vol-
ume 1401 of Lecture Notes In Computer Science. Springer, April 1998.

[82] Qusay H. Mahmoud. The Web as a Global Computing Platform.
In Alfons Hoekstra Peter Sloot, Marian Bubak and Bob Hertzberger,
editors, High-Performance Computing and Networking, volume 1593 of
Lecture Notes In Computer Science. Springer, 1999.

[83] Ursula Maier and Greg Stellner. Distributed Resource Manage-
ment for Parallel Applications in Networks of Workstations. In
Bob Hetzberger and Peter Sloot, editors, High-Performance Computing
and Networking, HPCN’97, volume 1225 of Lecture Notes In Computer
Science. Springer, 1997.

[84] Ofer Maor. NFS-Root-Client Mini-HOWTO. Internet, Febru-
ary 1999. hitp://www.linuz.org/docs/ldp/howto/mini/NFS-Root- Client-
mini-HOWTO /index.html.

[85] Evangelos P. Markatos, Manolis G.H. Katevenis, and Penny Vatsolaki.
The Remote Enqueue Operation on Networks of Workstations.
In Dhabaleswar K. Panda and Craig B. Stunkel, editors, Network-Based
Parallel Computing, volume 1362 of Lecture Notes In Computer Science.
Springer, February 1998.

[86] James Martin and Kathleen Kavanagh Chapman. Local Area Networks.
Prentice-Hall, 1989.

[87] Jeremy Martin and Alex Wilson. A Visual BSP Programming En-
vironment for Distributed Computing. In Babak Falsafi and Mario
Lauria, editors, Network-Based Parallel Computing, volume 1797 of Lec-
ture Notes In Computer Science. Springer, 2000.

[88] Norman Matloff. Analysis of a Programmed Backoff Method for
Parallel Processing on Ehternets. In Dhabaleswar K. Panda and
Craig B. Stunkel, editors, Network-Based Parallel Computing, volume
1362 of Lecture Notes In Computer Science. Springer, February 1998.

[89] Motohiko Matsuda, Yoshiko Tanaka, Kazuto Kubota, and Mitsuhisa
Sato. Network Interface Active Messages for Low Over-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.linux.org/docs/ldp/howto/mini/NFS-Root-Client-

BIBLIOGRAPHY 175

head Communication on SMP PC Clusters. In Alfons Hoek-
stra Peter Sloot, Marian Bubak and Bob Hertzberger, editors, High-
Performance Computing and Networking, volume 1593 of Lecture Notes
In Computer Science. Springer, 1999.

[90] Ron Mayer. Performance and accuracy benchmarking for
FFT. Internet, 1993. http://www.geocities.com/ResearchTriangle/-
8869/fftsummary. himl.

[91] Arnold Meijster and Fred Wubs. Towards an Implementation of
a Multilevel ILU Preconditioner on Shared-Memeory Comput-
ers. In Roy Williams Marian Bubak, Hamideh Afsarmanesh and Bob
Hertzberger, editors, High Performance Computing and Networking, vol-
ume 1823 of Lecture Notes In Computer Science. Springer, 2000.

[92] J. Meira. Modeling Performance of Parallel Programs. Internet,
June 1995. htip://citeseer.nj.nec.com/meira95modeling. html.

[93] C. Mendes. Performance Scalability Prediction on Multicomputers.
Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1997.

[94] David Mentré. Linux SMP-Howto. Internet, January 2000.
hitp: //www.linuz. org/docs /ldp /howto /SMP-HOWTO. html.

[95] Chan Wai Ming, Samuel Chanson, and Mounir Hamdi. The Design
of a Parallel Programming System for a Network of Worksta-
tions: An Object-Oriented Approach. In Dhabaleswar K. Panda
and Craig B. Stunkel, editors, Network-Based Parallel Computing, vol-

ume 1362 of Lecture Notes In Computer Science. Springer, February
1998.

[96] Jagdish J. Modi. Parallel Algorithms and Matriz Computation. Oxford
University Press, 1988.

[97] J. Mohan. Performance of Parallel Programs: Model and Analyses.
Ph.D. Thesis, Carnegie Mellon University, 1984.

[98] F. Munz, T. Stephan, U. Maier, T. Ludwig, A. Bode, S. Ziegler,
S. Nekolla, P. Bartenstein, and M. Schwaiger. Improved Functional
Imaging through Network Based Parallel Processing. In Dha-
baleswar K. Panda and Craig B. Stunkel, editors, Network-Based Par-
allel Computing, volume 1362 of Lecture Notes In Computer Science.
Springer, February 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.geocities.com/ResearchTriangle/-
http://citeseer.nj.nec.com/meira95modeling.html
http://www.linux.org/docs/ldp/howto/SMP-HOWTO.html

BIBLIOGRAPHY 176

[99] Bhavana Nagendra and Lars Rzymianowicz. High Speed Networks.
In Buyya Rajkumar, editor, High Performance Cluster Computing, vol-
ume 1, chapter 9, pages 204-245. Prentice Hall Inc, 1999.

[100] Hironori Nakajo, Hidekazu Tanaka, Yoshinori Nakanishi, Masaki Ko-
hata, and Yukio Kaneda. Distributed Shared-Memory for a Work-
station Cluster with a High Speed Serial Interface. In Peter
Sloot, Marian Bubak, and Bob Hertzberger, editors, High-Performance
Computing and Networking, volume 1401 of Lecture Notes In Computer
Science. Springer, April 1998.

[101] Shimizu Naochiko and Watanabe Takehiko. High Peformance Parallel
FFT on Distributed Memory Parallel Computers. In J. Harmanis
G. Goos and J. van Leeuwen, editors, High Performance Computing,
ISHP(C’97, Lecture Notes In Computer Science. Springer, 1997.

[102] T. D. Nguyen, R. Vaswani, and J. Zahorjan. Maximizing Speedup
Through Self-Tuning Processor Allocation. Technical Report TR-
95-09-02, 1995.

[103] Jaechun No, Jests Carretero, and Alok Choudhary. High Performance
Parallel I/O Schemes for Irregular Applications on Clusters of
Workstations. In Alfons Hoekstra Peter Sloot, Marian Bubak and
Bob Hertzberger, editors, High-Performance Computing and Network-
ing, volume 1593 of Lecture Notes In Computer Science. Springer, 1999.

[104] Masato Oguchi and Masaru Kitsuregawa. Dynamic Remote Memory
Acquiring for Parallel Data Mining on PC Cluster: Preliminary
Performance Results. In Alfons Hoekstra Peter Sloot, Marian Bubak
and Bob Hertzberger, editors, High-Performance Computing and Net-
working, volume 1593 of Lecture Notes In Computer Science. Springer,
1999.

[105] Masato Oguchi, Takahiko Shintani, Takayuki Tamura, and Masaru Kit-
suregawa. Characteristics of a Parallel Data Mining Application
Implemented on an ATM Connected PC Cluster. In Bob Het-
zberger and Peter Sloot, editors, High-Performance Computing and Net-
working, HPCN’97, volume 1225 of Lecture Notes In Computer Science.
Springer, 1997.

[106] Hitoshi Oi and N. Ranganathan. Utilization of Cache Area in On-
Chip Multiprocessor. In A Fukuda C Polychronopoulos, J. Kazuki

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 177

and S Tomita, editors, High Performance Computing, ISHP(C’99, Lec-
ture Notes In Computer Science. Springer, 1999.

[107] H. Oksiizoglu and A.G.M van Hees. A Barotropic Global Ocean
Model and Its Parallel Implementation on Unstructured Grids.
In Peter Sloot, Marian Bubak, and Bob Hertzberger, editors, High-
Performance Computing and Networking, volume 1401 of Lecture Notes
In Computer Science. Springer, April 1998.

[108] Kunth Omang. Performance of a Cluster of PCI Based Ultra-
Sparc Workstations Interconnected with SCI. In Dhabaleswar K.
Panda and Craig B. Stunkel, editors, Network-Based Parallel Comput-
ing, volume 1362 of Lecture Notes In Computer Science. Springer, Feb-
ruary 1998.

[109] Stan Openshaw and Ian Turton. High-Performance Computing and the
Art of Parallel Programming. Routledge, 2000.

[110] P. Palazzari, P.D. Atanasio, and F. Ragusini. Simulation of
Pattch Array Antennas through the Implementation of Finite-
Difference Time-Domain (FD-TD) Algorithm on Distributed
Memory Massively Parallel Systems. In Peter Sloot, Marian Bubak,
and Bob Hertzberger, editors, High-Performance Computing and Net-
working, volume 1401 of Lecture Notes In Computer Science. Springer,
April 1998.

[111] David A. Patterson and John L. Hennessy. Computer Architecture A
Quantitative Approach. Morgan Kaufmann Publishers Inc., second edi-
tion, 1996.

[112] Miguel Paz and Victor Gulias. Cluster Setup and its Administra-
tion. In Buyya Rajkumar, editor, High Performance Cluster Computing,
volume 1, chapter 2, pages 48-67. Prentice Hall Inc, 1999.

[113] A.J.H. Peddemors and L.O. Hertzberger. A high Performance Dis-
tributed Database Systrem for Enhanced Intermet Services.
In Peter Sloot, Marian Bubak, and Bob Hertzberger, editors, High-
Performance Computing and Networking, volume 1401 of Lecture Notes
In Computer Science. Springer, April 1998.

[114] Michael J. Quinn. Designing Efficient Algorithms For Parallel Comput-
ers. McGraw-Hill Inc., 2 edition, 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 178

[115] Giinther Rackl, Filippo de Stefani, Francois Héran, Anotonello
Pasquarelli, and Thomas Ludwig. Airport Simulation Using
CORBA and DIS. In Alfons Hoekstra Peter Sloot, Marian Bubak
and Bob Hertzberger, editors, High-Performance Computing and Net-
working, volume 1593 of Lecture Notes In Computer Science. Springer,
1999,

[116] Simon Ramo, John R. Whinnery, and Theodore Van Duzer. Fields and
Waves in Communication Flectronics. John Wiley & Sons, 1993.

[117] Myoung An Richard Tolimeri and Chao Lu. Mathematics of Multidi-
mensional Fourier Transform Algorithms. Springer, 2 edition, 1997.

[118] Beth Richardson. Parallel Performance Analysis. Internet, Sep-
tember 1998. hitp://www.ncsa.viuc.edu/SCD/HPCTraining/materials/
html/parperf/sld001.htm.

[119] Mark Russinovich. Inside Microsoft Cluster Server. Windows NT
Magazine, pages 57-62, February 1998.

[120] Volker Sander, Dietmar FErwin, and Valentina Huber. High-
Performance Computer Management Based on Java. In Peter
Sloot, Marian Bubak, and Bob Hertzberger, editors, High-Performance
Computing and Networking, volume 1401 of Lecture Notes In Computer
Science. Springer, April 1998.

[121] J. Santoso, G.D. van Albada, B.A.A. Naziel, and P.M.A. Sloot.
Skel-BSP: Performance Portability for Skeletal Programming.
In Roy Williams Marian Bubak, Hamideh Afsarmanesh and Bob
Hertzberger, editors, High Performance Computing and Networking, vol-
ume 1823 of Lecture Notes In Computer Science. Springer, 2000.

[122] Daniel Savarese and Thomas Sterling. Beowulf. In Buyya Rajkumar,
editor, High Performance Cluster Computing, volume 1, chapter 26,
pages 625-645. Prentice Hall Inc, 1999.

[123] J. Schopf. Structural prediction models for high-
performance distributed applications. Internet, 1997.
hitp: //citeseer.nj.nec.com/schopf97structural. html.

[124] Martin Schulz. SISCI-Pthreads SMP-like Programming on an
SCl-cluster. In Peter Sloot, Marian Bubak, and Bob Hertzberger,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www

BIBLIOGRAPHY 179

editors, High-Performance Computing and Networking, volume 1401 of
Lecture Notes In Computer Science. Springer, April 1998.

[125] P.A. Smeulders. A Reconfigurable Multicomputer System: Implementa-
tion and Performance. Ph.D. Thesis, University of Western Ontario,
1992.

[126] E. Smirni and E. Rosti. Modeling speedup of SPMD applications
on the Intel Paragon. Lecture Notes in Computer Science, 919:94-77,
1995.

[127] Jorg Stadler. Industrial Applications of High Performance Com-
puting The Experiences from HWW. In Pefer Sloot, Marian
Bubak, and Bob Hertzberger, editors, High-Performance Computing
and Networking, volume 1401 of Lecture Notes In Computer Science.
Springer, April 1998.

[128] William Stallings. Data and Computer Communications. Macmillan
Publishing Company, 4 edition, 1994.

[129] Nenad Stankovic and Zhang Kang. A Parallel Programming Envi-
ronment for Networks. In A Fukuda C Polychronopoulos, J. Kazuki
and S Tomita, editors, High Performance Computing, ISHP(C’99, Lec-
ture Notes In Computer Science. Springer, 1999.

[130] Frank L. Stasa. Applied Finite Element Analysis for Engineers. CBS
College Publishing, 1985.

[131] P. Strating. Parallel Efficiency of a Bundary Integral Equation
Method for Nonlinear Water Waves. In Bob Hetzberger and Peter
Sloot, editors, High- Performance Computing and Networking, HPCN’97,
volume 1225 of Lecture Notes In Computer Science. Springer, 1997.

[132] Nanri Takeshi, Sato Hiroyuki, and Shimasaki Masaaki. Cost Estima-
tion of Coherence Protocols of Software Managed Cache on
Distributed Shared Memory System. In J. Harmanis G. Goos and
J. van Leeuwen, editors, High Performance Computing, ISHPC’97, Lec-
ture Notes In Computer Science. Springer, 1997,

[133] David Taniar. A High Performance Object-Oriented Distributed
Parallel Database Architecture. In Peter Sloot, Marian Bubak, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 180

Bob Hertzberger, editors, High-Performance Computing and Network-
ing, volume 1401 of Lecture Notes In Computer Science. Springer, April
1998.

[134] Damian Trybus. Analysis of a high performance workstation. M.E.Sc.
Thesis, University of Western Ontario, August 1998.

[135] Damian Trybus. Electric Field Approximation Using Mesh Tech-
niques in a Distributed Environment. In Proceedings of the Elec-

irical and Computer Engineering Graduate Research Symposium, May
2001.

[136] Jiri Vlach and Kishore Shinghal. Computer Methods for Circuit Analysis
and Design. Van Nostrand Reinhold Company, 1983.

[137] Heribert Vollmer. Relations Among Parallel and Sequential Com-
putation Models. In Joxan Jafar and Roland H.C. Yap, editors, Con-
currency and Parallelism, Programming, Networking and Security, vol-

ume 1179 of Lecture Notes In Computer Science. Springer, December
1996.

[138] Vladimir Vuksan. DHCP mini-HOWTO. Internet, July 2000.
hitp: //www.linuz.org/docs /ldp /howto /mini/DHCP /index. html.

[139] Chen Wang and Yong Meng Teo. A Framework for Exploiting Ob-
ject Parallelism in Distributed Systems. In Roy Williams Mar-
ian Bubak, Hamideh Afsarmanesh and Bob Hertzberger, editors, High
Performance Computing and Networking, volume 1823 of Lecture Notes
In Computer Science. Springer, 2000.

(140] Y. Yan, X. Zhang, and Y. Song. An effective and prac-
tical performance prediction model for parallel computing
on non-dedicated heterogeneous NOW. Internet, Oct 1996.
hitp: //citeseer.nj.nec.com/yan96effective. html.

[141] Akiyama Yutaka, Kentaro Onizuka, Tamotsu Noguchi, and Makoto
Ando. Biological- and Chemical- Parallel Applications on a PC
Cluster. In A Fukuda C Polychronopoulos, J. Kazuki and S Tomita, ed-
itors, High Performance Computing, ISHP(C"99, Lecture Notes In Com-
puter Science. Springer, 1999.

[142] Andrea Zavanella. Skel-BSP: Performance Portability for Skeletal
Programming. In Roy Williams Marian Bubak, Hamideh Afsarmanesh

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.linux.org/docs/ldp/howto/mini/DHCP/index.html

BIBLIOGRAPHY 181

and Bob Hertzberger, editors, High Performance Computing and Net-

working, volume 1823 of Lecture Notes In Computer Science. Springer,
2000.

[143] Sijun Zeng and Sivarama P. Dandamudi. Centralized Architecture
for Parallel Query Processing on Networks of Workstations.
In Alfons Hoekstra Peter Sloot, Marian Bubak and Bob Hertzberger,
editors, High-Performance Computing and Networking, volume 1593 of
Lecture Notes In Computer Science. Springer, 1999.

[144] X. Zhang, Z. Xu, and L. Sun Semi-empirical mul-
tiprocessor performance predictions. Internet, 1995.
http://citeseer.nj.nec.com/95872.html.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Index

2D-FFT, 82, 105 Member, 52
Hardware, 52
Algorithm Software, 53
Exponent Evaluation, 73 Mesh Calculations, 98
Parallel Network, 61
2D-FFT, 83 Server, 48
Matrix Multiplication, 75 Software, 49
Mesh Calculations, 96 Theory, 6
Sequential Cluster Computer
2D-FFT, 83 Axchitecture, 10
Matrix Multiplication, 74 Uses, 8
Mesh Calculations, 95 Cluster computer, 2
Apparatus, 47 Communications, 21
Application Computer
Cluster, 76 Parallel, 7
Applications, 72 Illustration, 7

Computer Architecture

Beowulf, 3, 8 von Neumann, 6
BOOt, 53, 66 COW, 3
ROM, 53
Boot ROM, 70 data
BOOTP, 66 experimental, 107
Data Transfer, 21
Client, 56 DHCP, 66
Client—Server, 61 Client-Server conversation, 68
Cluster, 47 Diskless, 56
2D-FF'T, 86 DMS, 14
Applications, 72 Threads, 20
Matrix Multiplication, 73
Mesh Calculations, 94 Efficiency, 29
Hardware, 47 Flectric Field, 94
Server, 49 Ethernet, 57
Matrix Multiplication, 76 experimental data, 107

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INDEX

FFT, 9, 82
2D, 82
Flynn’s Taxonomy, 10

Hub, 57

I/0, 17
Bandwidth, 17
Latency, 17

IP, 17

Kernel, 50, 55
Cluster Member, 55
Server, 50

LAN, 2, 17

Linda, 16

Linux, 3, 8, 50
Kernel, 50

Matrix Multiplication, 9, 73
Mesh Calculations, 94

MIMD, 10, 16

MISD, 10

MPI, 16

Multithreaded Application, 103

Network, 61
Connection, 57
Interface Card, 57
Topology, 58

Network Boot, 53, 66

NF'S, 55, 66, 70

NIC, 57

NoW, 3

NUMA, 11, 14

Parallel
2DFFT, 83
Computer, 7
Exponent Evaluation, 73
Massively, 10

183

Matrix Multiplication, 75
Mesh Calculations, 96
Parallel Computation
Why, 1
Parallel Processing
Examples, 24
Performance, 26
Performance, 26
Process, 19
PVM, 16

ROM, 53

Scalability, 59
Server, 48
SIMD, 10
SISD, 10
SMP, 4, 10, 11, 13, 50
SMS, 11
Threads, 20
SpeedUp, 28
Superlinear, 28

TCP/IP, 17, 63
TFTP, 66, 69
Client—Server conversation, 70
Thread, 20, 103
Server code for matrix multipli-
cation, 105
Topology, 58

UMA, 11, 13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita

NAME: Damian Trybus

PLACE OF BIRTH: Wroclaw, Poland

YEAR OF BIRTH: 1969

POST-SECONDARY University of Western Ontario
EDUCATION London, Ontario

AND DEGREES: 1993-1997 B.E.Sc.

University of Western Ontario
London, Ontario
1997-1998 M.E.Sc.

HONOURS AND OGGST scholarship recipient 1999, 2000, 2001, 2002
AWARDS:
RELATED WORK Systems Designer
EXPERIENCE: Ernst & Young,.
1997 - 2002
Lecturer
University of Western Ontario
1999 - 2002

Research Assistant

University of Western Ontario
1997 - 2003

Publications:

Performance Analysis of a Dual Processor Workstation Trybus, D., Kucerovsky,
Z.,Ieta, A., Doyle, T. IEEE CCECEQ2 Proceedings; ISBN: 0-7803-7514-9; vol-
ume 2.

Distributed FElectric Field Approzimation. Cluster Base Computations Try-
bus, D., Kucerovsky, Z., Ieta, A., Doyle, T. IEEE HPCSAQ2, Proceedings of
the 16th Annual International Symposium on High Performance Computing
Systems and Applications. Moncton, Quebec, Canada; volume 1.

Pressure Dependent Corona Discharge in Selected Hydrocarbons Ieta, A., Kucerovsky,
Z. Greason W., Trybus D. Proceedings of the 4th International Power Systems
Conference. Timisoara, Romania

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

