
www.manaraa.com

Design and Analyses of a Cluster Computer

by

Damian Trybus

Faculty of Engineering Science
Department of Electrical and Computer Engineering

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Faculty of Graduate Studies
The University of Western Ontario

London, Ontario, Canada

© Damian Trybus 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1*1 Library and
Archives Canada

Published Heritage
Branch

39 5 W ellington Street
O ttaw a O N K1A 0N 4
C anada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue W ellington
O ttaw a O N K1A 0N 4
C anada

Your file Votre reference
ISBN: 0-612-96874-X
Our file Notre reference
ISBN: 0-612-96874-X

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UWO Licenses

And

Certificate of Examinations

are kept on file at

The University of Western Ontario

In

The Faculty of Graduate Studies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Abstract
Parallel computing, as opposed to sequential processing, plays a growing

role in solving increasingly complex computational problems. T rad itiona lly
mainframes and top of the line workstations were used for scientific (high
power) computing. This dissertation investigates parallel computing by means
of a variable computer cluster approach. An original variable cluster, based
on PC-class computers, was produced and implemented for the purpose of
t his research, along w ith the necessary algorithms and computer codes. The
processing performance of the variable cluster was evaluated in the case of
different computing workloads provided by high incidence com putational al
gorithm s for one and two-dimensional FFT, as well as by Laplacian field (mesh)
algorithm calculations. In order to allow for comparison w ith other studies (for
instance, Am dahl’s work), SpeedUp and Efficiency served as main concepts for
the analysis of collected experimental data. Performance gain and re lia b ility
depend on the type of computing problem, amount of data transferred, num
ber of machines participating in the computation, as well as on the physical
characteristics of the machines and on infrastructure. A discrete model ex
plaining the experimental data is proposed; an additional continuous model is
also developed. ” Resonance” workloads are to a certain extent predicted by
our modeling, and the relation w ith com putational performance is specified.
Useful insights into the appropriate match between the com putational algo
rith m and the cluster architecture are documented in our study.
The implemented computer cluster was found to be a robust p latform th a t
could be used for development of engineering applications requiring greater
computing power than regular workstations can deliver. For selected cases the
processing performance of the variable cluster scaled linearly w ith the number
of nodes involved in the computation.

Keywords: D istributed Computer, Parallel Processing, FFT, Algorithm s,
Modeling

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Acknowledgements

This project would have not been possible w ithout the help and support I

received from my advisor, Professor Z. Kucerovsky. The discussions we have

had throughout the past six years have changed the way I th in k and opened

my eyes to see things I never knew existed. He inspired me to go further than

I believed I could and allowed me to make this project a reality.

I would like to thank my wife Dorothy and my children Daria and Daniel

for the ir support. For a number of years they have put up w ith late nights,

missed appointments, exams and other interruptions to the ir life so I could

pursue my Ph.D. degree in E lectrical Engineering. I owe them a great debt.

Last and certainly not least I would like to thank Adrian and Rodica Ieta

for the ir help w ith the assembly of the thesis.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Contents

CERTIFICATE OF EXAMINATION ii

ABSTRACT iii

ACKNOWLEDGEMENTS iv

CONTENTS v

LIST OF TABLES x

LIST OF FIGURES xi

NOMENCLATURE xiii

1 Introduction 1
1.1 W hy Parallel C om pu ta tion? .. 1
1.2 Cluster Computers ... 2
1.3 Scope of the Project ... 3
1.4 Background of T hesis... 3
1.5 Design Considerations ... 4

2 Cluster Computing: Theory and Applications 6
2.1 C luster Computer Theory . 6

2.1.1 Cluster Computer A rc h ite c tu re 10
Shared Memory Systems 11

Scaling considerations.. . 13
D istributed Memory Systems 14

Performance considerations.................................... 15
Ethernet Networks 15

Message Passing ... 16
2.2 Parallel P rocess ing .. 18

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2.1 Computations .. 18
Processes .. 19
T h re a d s 20

Threads vs. Processes.......................... 20
2.2.2 C om m un ica tions...................... 21

Data Transfer 21
Data Transfer T im e... 21
Communication Time 22
Communication C o s t... . 22

System o ve rh e a d ... 23
Context Switching. 23
System Call Overhead... 23
In te rrup t/ Signal La tency:............................ 23
Semantics................................... 24
R eliab ility ... 24

2.3 Parallel Processing Examples .. 24
2.3.1 Em ptying a swimming pool using pails................... 24
2.3.2 Assembling a hard disk using a pipeline. 25

2.4 Parallel P erfo rm ance 26
2.4.1 SpeedUp ... 28

Superlinear S peedU p... 28
2.4.2 E ffic ie n c y 29

Efficiency E xa m p le 29
2.4.3 Amdahl s L a w ... 30
2.4.4 SpeedUp L im ita tio n s .. 32

2.5 Performance Evaluation of the Cluster 35
2.5.1 M icrobenchm arks.. 35
2.5.2 Workloads 36

M atrix M u ltip lica tio n 37
F F T 38

2D-FFT......................... 39
Electric Field A p p ro x im a to r......................... 40

2.6 M odeling................... 43
2.6.1 Linear Model 44
2.6.2 Nonlinear Model 45
2.6.3 Discrete Systems 45

v i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3 Apparatus 47
3.1 S e rv e r.. 48

3.1.1 Server Hardware ... 49
3.1.2 Server S o ftw a re .. 49

Kernel C o n fig u ra tio n 50
Development Software 51

3.2 Cluster Member 52
3.2.1 Hardware C o n fig u ra tio n .. 52
3.2.2 Software Configuration ... 53

Network B o o t... 53
Kernel C o n fig u ra tio n 55
Diskless C lient ... 56

3.3 Network C o n n e c tio n ... 57
3.3.1 N IC s ... 57
3.3.2 H u b s 57
3.3.3 Network Topology .. 58

3.4 S c a la b ility 60

4 Cluster Network Implementation 61
4.1 Network C onnectiv ity 61

4.1.1 C lient-Server C om puting.. 61
4.1.2 OS S u p p o rt... 63

Network S u p p o rt... 63
B inary C o m p a tib ility ... 64

4.2 Network S e rv ice s ... 65
4.2.1 DHCP and BOOTP 66
4.2.2 T F T P .. 69
4.2.3 NFS . .. 70

5 Cluster Applications 72
5.1 M a trix M u ltip lic a tio n 73

5.1.1 Sequential A lg o rith m 74
5.1.2 Parallel A lg o r ith m 75
5.1.3 Cluster Implementation 76
5.1.4 Concluding Remarks 81

5.2 2DFFT 82
5.2.1 Sequential A lgorithm ... 83
5.2.2 Parallel A lg o r ith m 83
5.2.3 Cluster Implementation 86
5.2.4 Concluding R e m a rks 93

v ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.3 E lectric Field Approxim ation .. 94
5.3.1 Sequential A lg o rith m .. 95
5.3.2 Parallel A lg o r ith m ... 96
5.3.3 C luster Im p le m e n ta tio n 98
5.3.4 Concluding R e m a rks .. 103

5.4 M ultitreaded Server A p p lic a tio n s .. 103
5.4.1 M a trix M u ltip lic a tio n 104

Cluster Server Sequential Pseudo C o d e 104
5.4.2 2 D -F F T .. 105
5.4.3 Shared Memory Access... 106

6 Experimental D ata and Results 107
6.1 System L a te n c y ... 107
6.2 Data T ra n s fe r... 109

6.2.1 Raw Data T ra n s fe r... 110
6.2.2 Marshalled Data Transfer ... 110
6.2.3 C luster Data T ran s fe rs ... 110

6.3 M a trix M u ltip lic a tio n .. I l l
6.4 2D F F T .. I l l
6.5 Mesh Calculations 116

7 Discussion 118
7.1 Performance and S c a la b ility .. 118

7.1.1 D istributed M a trix M u ltip lic a tio n 118
7.1.2 D istributed 2 D F F T 119
7.1.3 D istributed G rid C alcu la tion .. 122

7.2 D istributed M a trix M u ltip lica tion M o d e lin g 123
7.2.1 Discrete Model 123

IO Perform ance... 123
M a trix M u ltip lica tion I/O A n a ly s is 123
CPU Performance 126
Cluster Performance 128

7.2.2 Continuous Model ... 131
Data Transfer .. 131
CPU U tiliza tion 131

8 Summary and Conclusions 137
8.1 Recommendations for Future W o rk 141

v iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A Cluster Program Listings 144
A .l C luster Libraries 144

A .1.1 Socket L ib rary .. 145
socket, c ... 145

A .1.2 Database L ib ra ry .. 147
s q llib .h ... 147
s q llib .c ... 147

A .1.3 System L ib ra ry .. 150
system.c ... 150

A .1.4 M a trix L ib r a r y 151
arrayops.h 151
arrayops.c 151

A .2 2D-FFT C o d e .. 156
A .2.1 S e rv e r... 156

clusterserver.c.. 156
A .2.2 Cluster M em ber.. 161

BIBLIOGRAPHY 165

INDEX 182

VITA 184

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List of Tables

6.1 Network la te n cy 108

7.1 C\ and C2 V a lu e s 130

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List of Figures

2.1 von Neumann Computer A rch ite c tu re .. 7
2.2 Cluster Computer A rc h ite c tu re 8
2.3 F lynn’s Taxonomy for P rocessors .. 10
2.4 Shared Memory Cluster Computer ... 12
2.5 SMP architectures 13
2.6 D istributed Memory Cluster C o m p u te r..................................... 14
2.7 User-level send/receive message-passing a b s tra c tio n 16
2.8 Latency and bandwidth of I/O d e v ic e s 18
2.9 Generic scalable multiprocessor organization.............................. 19
2.10 Components of execution tim e from the perspective of an ind i

vidual processor.. 27
2.11 Am dahl’s Law SpeedUp 32
2.12 Am dahl’s Law E ffic ie n c y 33
2.13 Optimum and actual parallel implementation t im e s 34

3.1 SMP support kernel com p ila tion .. 50
3.2 Listing of /e tc /p roc f i le 51
3.3 Bus T o p o lo g y ... 59
3.4 Star Topology .. 59

4.1 Typical Client-Server .. 64
4.2 Implemented Cluster C lie n t-S e rv e r..................... 65

5.1 Exponent evaluation serial algorithm 72
5.2 Parallel exponent evaluation client .. 73
5.3 Parallel exponent evaluation s e rv e r ... 73
5.4 Sequential m atrix m ultip lica tion a lg o rith m 74
5.5 Mesh ca lcu la tions.................................. 103
5.6 Sequential Server C o d e 105

6.1 Machine latency on 10M Bit network 108
6.2 Machine latency on 100MBit network 109

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6.3 Transfer Rate on 10M Bit N e tw o rk I l l
6.4 Transfer Rate on 100M Bit N e tw o rk 112
6.5 M a trix m u ltip lica tion speedup on 10M Bit n e tw o rk 112
6.6 M a trix m u ltip lica tion speedup on 100MBit n e tw o rk 113
6.7 2D-FFT speedup on 10M Bit n e tw o rk 114
6.8 2D-FFT SpeedUp on 100MBit n e tw o rk 114
6.9 Large memory 2D-FFT SpeedUp on 100MBit network 115
6.10 Mesh calculations SpeedUp on 10M Bit n e tw o rk 117
6.11 Mesh calculations SpeedUp on 100MBit n e tw o rk 117

7.1 Large data m a trix m ultip lica tion SpeedUp 119
7.2 Large data 2D-FFT SpeedUp 120
7.3 Large data 2D-FFT SpeedUp (Super SpeedUp) 121
7.4 Large data grid calculation S p e e d U p 122
7.5 Cluster I/O Performance for a distributed m atrix m u ltip lica tion 125
7.6 M a trix m u ltip lica tion a lg o rith m ... 126
7.7 Data pa rtition ing a lg o r ith m .. 127
7.8 M a trix m ultip lica tion discrete m o d e l.................................... 130
7.9 Cluster transfer rate .. 132
7.10 Cluster CPU u tiliza tion ... 133
7.11 M a trix m ultip lica tion 5 machine SpeedUp model 100M Bit . . 135
7.12 M a trix m ultip lica tion 6 machine SpeedUp model 100M Bit . . 136
7.13 A, p, 7 values for M a trix M u ltip lic a tio n 136

x ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Nom enclature

Beowulf: Computing cluster based on PC hardware and L inux operating sys
tem

BOOTP: Bootstrap Protocol, IP management system for network hosts.

CM: Cluster Member.

CoW: Cluster of W orkstations

CS: Cluster Server

CSM A/CD: Carrier Sense M ultip le Access w ith Collision Detection. Medium
access method for local area networks tha t employ a bus or tree topology.

DMS: D istributed Memory Systems

EDO: Extended Data Out. RAM type used in Pentium class computers.

Efficiency: A measure of parallel performance tha t is closely related to speedup.
Efficiency is defined as: E ffic ie n c y = x 100%

FFT: Fast Fourier Transform.

IP: Internet Protocol, message passing protocol

LAN: Local Area Network

L in d a : environment used for developing programs on DMS systems.

Linux: U N IX clone operating system

MIMD: M ultip le Instruction M ultip le Data.

MISD: M ultip le Instruction Single Data.

x iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

MPI: Message Passing Interface, environment used for developing programs
on DMS systems.

M PP: Massively Parallel Processor.

NFS: Network File System.

NIC: Network Interface Card.

NoW: Network of Workstations

NUMA: Non-Uniform Memory Access

OS: Operating System.

Parallel Computer: Computer w ith more than one processors capable of
executing m ultip le instructions at the same tim e

PC: Personal Computer

POST: Power On System Test, self conducted computer tests prior boot.

PVM: Parallel V irtu a l Machine, environment used for developing programs
on DMS systems.

RAM: Random Access Memory.

R O M : Read Only Memory

SDRAM: Synchronous Dynamic Random Access Memory.

SIMD: Single Instruction M ultip le Data.

SISD: Single Instruction Single Data.

SMP: Symmetric M u lti Processor

SM S: Shared Memory System

c j t t . Time required for one processor to compute a task
Pee P" Time required for N processors to compute a task

T C P : Transfer Control Protocol, runs on top of IP.

T F T P : T riv ia l File Transfer Protocol

UDP: User Datagram Protocol, runs on top of IP.

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

U M A : Uniform Memory Access

x 86: Processor architecture base on In te l x86 processor (1386—i686)

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1

Introduction

Sequential computers (computers tha t perform one task at a tim e) are quickly

reaching a physical lim it regarding the speed at which they process data, which

cannot be increased through the use of faster components. The speed of ligh t

places an upper lim it on the performance tha t can be achieved w ith a sequential

architecture. For many computational problems, the tim e they take to obtain

a solution using a sequential computer is unacceptably slow. One way out

of th is impasse is provided by parallel computation. On a parallel computer,

several processors cooperate to solve a problem simultaneously in a fraction of

the tim e required by one processor [4].

1.1 W hy Paralle l C om putation?

Parallel computers are used p rim arily to speed up computations. A parallel

algorithm can be significantly faster than the best possible sequential solution.

There is a growing number of applications, in science, engineering and medicine

tha t require computing speeds tha t cannot be delivered by any current or

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 1. I n t r o d u c t io n 2

future conventional computers. These applications involve processing large

amounts of data, or perform ing a large number of iterations, or sometimes

both. The practicality of problem solution is often dictated by associated time

constrains. The relevance of a 24 hour weather forecast may be questioned if

it requires 36 hours to calculate [23, p 1]. Parallel com putation is the only

approach known today th a t would make these computations feasible.

1.2 Cluster Computers

Engineers and scientists are the prim ary users of high performance computers.

H istorica lly the ir options were lim ited to a few computing platforms. Large

problems could be solved only on mainframe computers or state of the art,

high performance workstations. Access to mainframes is usually not very con

venient and state of the art workstations are expensive. Computer technology

is changing in a rapid manner and machines become obsolete as soon as they

are delivered to the user. I t is also quite difficult and cumbersome to migrate

data, applications and system settings from an old machine to a new one on

a frequent basis.

Personal Computer (PC) revolution brought computers to the masses. PCs

became common these days as calculators were several years ago. One can

find networks of PCs in libraries, classrooms and laboratories. W hile those

machines are usually used on a regular basis, they spend most of the ir time

idling, doing nothing useful. Quite often these id ling machines are connected

to a Local Area Network (LAN) and they can also be accessed remotely.

W hile PCs idling in libraries are usually not high end machines, there are

many of them and they are connected to a fast LAN. Traditional parallel com

puters have scaling problems and tend to be very expensive. I t is possible to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 1. I n t r o d u c t io n 3

organize several workstations into a computing cluster and u tilize the ir id ling

processors by scheduling and coordinating tasks tha t would be computed by

the machines. Advantages are clear; there is no need to purchase new hard

ware (as existing resources would be u tilized) and, w ith clever programming,

problems th a t could be solved only by large machines would easily be solved

by a cluster of workstations.

1.3 Scope of the Project

The project involved the design, implementation and analysis of a computing

cluster. Several workstations were converted in to cluster members for the ex

periment. A high end PC was assembled from standard, commercially avail

able, parts and configured to administer the cluster. Several benchmarking

applications were w ritten and run on the cluster. The performance and ap

p lica b ility o f the cluster were analyzed. The two most im portant performance

aspects analyzed were speedup and efficiency.

1.4 Background of Thesis

P lentifu l and inexpensive computer hardware together w ith free and powerful

operating systems have led to the advent of d istributed computing. Networks

of W orkstations (NoWs), Clusters of W orkstations (CoWs) and computing

clusters, such as the Linux based Beowulf cluster, have become very common

and the ir applicability is the subject of studies in many research institu tions.

Flores [48] writes:

“Research in parallel computing has tra d itiona lly focused on mul

ticomputers and shared memory multiprocessors. Currently, net

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 1. I n t r o d u c t io n 4

works of workstations (NoWs) are being considered as a good alter

native to parallel computers. That is due to there are high perfor

mance workstations w ith microprocessors that challenged custom-

made architectures. This class of workstations is w idely available

at relatively low cost. Furthermore, these networks provide the

w iring flex ib ility , scalability and incremental expansion required in

this environment.”

The m ajority of the Beowulf clusters in operation today run industria l

benchmarks and the results o f the benchmarks are compared against commer

cial supercomputers. Performance analysis of a high performance workstation

conducted by Trybus [134] demonstrated several problems in SMP architec

tures. The main idea behind the conducted research was to bu ild a distributed

computing cluster and analyze its performance. The main emphasis was put

on creating an open platform th a t could be used for conducting a variety of

engineering experiments. Several applications were run on the cluster and its

performance was evaluated.

1.5 Design Considerations

Several factors influenced the design of the cluster. The most notable factors

include:

• U tiliza tion of standard, commercially available hardware,

• Adaptation of standard software, operating system and networking soft

ware,

• Scalable and expandable architecture,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 1. I n t r o d u c t io n 5

• H igh performance to price ratio ,

• F le x ib ility and ease of configuration.

Researchers agree tha t such design decisions are d ifficu lt to make. Havick [61]

writes:

“One of the most d ifficu lt tasks in designing and commissioning

a Beowulf cluster is considering the price/ performance trade-offs

from the m ultitude of possible configuration options. There are

four crucial hardware parameters to choose in the design of a Beo

w u lf cluster: the type of processor to use in the nodes; amount

of memory installed in each node; the amount and type o f disk

installed in each node and the network in frastructure th a t is used to

connect the nodes. The best options w ill depend on the particular

application.”

Havick [61] also states tha t Beowulf clusters are typ ica lly b u ilt from com

m odity computers, usually PCs w ith x86 processors or workstations based on

RISC processors.

The thesis investigates the efficacy of the selected architecture in solv

ing a range of scientific problems and determines the performance as well as

the efficiency of the system. The thesis also demonstrates the importance of

the match between the algorithm and the architecture in achieving maximum

computational performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2

Cluster Computing: Theory and

Applications

This chapter introduces the theory of cluster computing, demonstrates known

architectures and presents applications tha t could be run on a cluster com

puter. Parallel computing lim ita tions are briefly described and Am dahl’s law

is discussed in some detail.

2.1 Cluster Computer Theory

In the late 1940’s, a group of researchers at Princeton U niversity proposed

a design th a t ushered the modern computer era. H alf a century later the

overwhelming m a jo rity of computers in use follow th is orig inal design. In such

a design, presented in figure 2.1, a computer consists essentially of a single

processing un it, local memory and inp u t/o u tpu t devices. The processing un it

executes a single sequence of instructions on a single sequence of data. Both

instructions and data are stored in main the memory of the computer. The

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 7

C Control BUS

C Address BUS

)
(Data BUS)

Processor

'N

Men

V
nory -—

J
10

J
Figure 2.1: von Neumann Computer Architecture

sequence o f instructions is the program, which tells the processor how to solve

a certain problem. The sequence of data is an instance of th a t problem. Such

a computer performs one instruction at a tim e. Such a model of computation

is known as sequential (or serial, or conventional) computer [4, p. 2],

A parallel computer, by contrast has two or more processors. Such a computer

is capable o f processing more than one sequence of instructions on one or more

sequences o f data at the same time.

A cluster computer is a collection o f off-the-shelf workstations connected by

an off-the-shelf LAN [6, p. 475]. A typ ica l cluster configuration is shown in

figure 2.2.

The availability of inexpensive hardware and free sophisticated operating

systems allowed researchers and developers to design and analyze PC clusters.

Koski [73] writes:

“D uring recent years clustered systems using off-the-shelf proces

sors and standard Ethernet networks have been increasingly popu

lar. The m otivation has been p rim arily the cheap price of systems,

but also the rapid development of standard processors. So-called

Beowulf systems have spread around the world. This development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 8

Parallel Applications

Sequential Applications Parallel Programming Environments

Cluster Middleware J
n C.

Workstation

Network
Software

Network
Hardware

PC/
Workstation

Network
Software

Network
Hardware

PC/
Workstation

Network
Software

Network
Hardware

cv_/.

Workstation

Network
Software

Network
Hardware

PC/
Workstation

Network
Software

Network
Hardware

High Speed Network

Figure 2.2: C luster Computer Architecture

is further accelerated by the Linux-boom which provides an ideal

and free operating system for these clusters.”

There are several reasons for designing and implementing cluster comupterse.

C luster environment can be used for:

• Fault Tolerance,

• Load Balancing,

• High Performance Computing.

Computer fau lt tolerance is quite often implemented by the means o f identical

or very sim ilar systems where the backup system is aware o f the state o f the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 9

system it is protecting. The state of the cluster is usually preserved on a shared

disk and the two systems have a private communication lin k th a t is used to

determine the ava ilab ility of the production system. Should the production

system fa il, the backup system w ill come on line w ith the same services tha t

the production system offered and the state of those services w ill be the same

as the one prio r to the failure of the production server. Fault tolerance is

usually implemented on mission c ritica l database servers. M icrosoft Wolfpack

is an example of such technology [119].

Load balancing is a popular way of increasing the availability of a service by

means of two or more systems providing the same static services or services

th a t do not change w ith time. An example of such a system would be a web

server serving web pages to clients. The web content can be replicated to

m ultip le servers, possibly located in different parts of the world. Clients do

not care where the inform ation comes from as long the requested inform ation is

received. The only requirement th a t needs to be fu lfilled is th a t the inform ation

be consistent among a ll partic ipating cluster members.

High performance, cluster computing is driven by the follow ing factors [109,

p. 53]:

1. Solving large problems th a t ran too slowly even on the fastest supercom

puters (simulations, scientific engineering applications).

2. Solving problems tha t were too large for any other available computer

(multi-dim ensional F F T ’s, operation on large matrices).

3. Cost saving computing of problems tha t could be solved on existing

albeit more expensive hardware.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 10

Researchers agree [142] tha t there is a renewed diffusion o f parallel p la t

forms from symmetric multiprocessors to PC clusters. Santoso [121] writes:

“W ith the advent of large computing power in workstations and

high speed networks, the high-performance computing is moving

from the use of massively parallel processors (MPPs) to cost effec

tive clusters of workstations.”

W orkstation based clusters have become a feasible alternative to expensive,

commercially available systems.

2.1 .1 C lu ster C om puter A rch itectu re

A form al classification of computer architectures according to a macroscopic

view of the ir p rincipal interaction patterns relating to instruction and data

streams was proposed by Flynn in 1972. W hat has become the so called

F lynn ’s taxonomy is shown in figure 2.3 [23, p. 14]. A cluster computer

Single Multiple
Instruction Instruction

stream stream

Single Data
stream SISD MISD

MIMDSIMDMultiple Data
stream ■

Figure 2.3: F lynn’s Taxonomy for Processors

falls in to the M IM D category as it is possible to run m ultip le instructions

streams (M I) working on m ultiple data (M D) at the same time. There are two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 11

main architectures used for implementing cluster computers. The firs t archi

tecture, U M A (Uniform Memory Access), uses processors tha t share common

memory. A more common name used for U M A systems is SMS or Shared

Memory Systems. The second popular architecture, NUM A (Non-Uniform

Memory Access) uses processors th a t have private memory and communicate

v ia a bus or a network. In t his thesis N UM A systems are referred to as DMS

or D istributed Memory Systems.

Shared Memory Systems

Shared memory systems utilize the most prevalent form of parallel architecture

used in multiprocessors of small to moderate scale. This architecture provides

a global physical address space and access to a ll of main memory from any

processor [38, p. 269]. A generic view of the SMP architecture is shown in

figure 2.4. Two variations of the generic implementation exist; they are shown

in figures 2.5a and 2.5b. Figure 2.5a shows a multiprocessor computer where

both the cache and the main memory are shared. Such architecture does not

suffer from the cache coherence problems but i f the combined speed of the

CPUs is larger than the speed of the cache serious performance degradations

are experienced. This approach has been used for connecting very small num

bers of processors, usually 2-8. Such architectures were very popular in the

mid-1980’s. The architecture shown in figure 2.5b is the most common SMP

architecture found in modern multiprocessor systems. Each processor has its

own cache, where it stores instructions and data. Such architecture suffers

from cache coherence problems [38, p. 273]; however, i f properly implemented

i t delivers great performance. This architecture is used to implement medium

scale multiprocessors consisting of 20-30 processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 12

Shared Memory

Interconnection Method

Processor 2 ProcessornProcessor 1

Figure 2.4: Shared Memory Cluster Computer

In the SMP architecture the shared space is supported d irectly by hard

ware. User processes can read and w rite shared v irtu a l addresses, and these

operations are realized by ind ividual loads and stores of shared physical addres

ses. The operating system does not need to be involved in address translation

because it is provided by the hardware.

Sharing the memory uniform ly amongst a ll processors allows each proces

sor equal access to a ll memory locations. The memory in U M A machines is

typ ica lly implemented in a central location w ith the processors acquiring ac

cess across a high-speed interconnection mechanism such as a bus or crossbar

switch. Communication and thus co-operation amongst processors is tig h tly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t i n g : T h e o r y a n d A p p l ic a t io n s 13

Shared MemoryShared Memory

BusShared Cache

Cache Cache Cache Cache
Bus

P3 PnP2 Pn P2P3

(b) Dedicated cache(a) Shared cache

Figure 2.5: SMP architectures

coupled and occurs w ith in the common memory via shared variables. Some

arb itra tion mechanism is necessary to prevent simultaneous updates of these

shared variables and to solve contention on the interconnection network [23,

p. 29],

Scaling considerations. SMP systems use processors connected to one

shared bus. A shared bus has a maximum length, and a fixed maximum

bandwidth. These physical constraints lim it expandibility of a SMP machine.

In modern machines buses run at high speeds and the w id th of the connecting

conductors is usually no longer than a few inches. The links become slower

w ith length and every technology has an upper lim it on length due to power

requirements and signal-to-noise ratio[38, p. 455]. Chip-level integration tech

nologies allow denser packaging and have been implemented by several ven

dors. The SMP systems available on the market today usually do not exceed

64 processor configurations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2 . C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 14

Interconnection Method

Local
Memory

Local
Memory

Local
Memory

ProcessornProcessor 2Processor 1

Figure 2.6: D istributed Memory Cluster Computer

Distributed Memory Systems

Implementing a v irtu a l shared memory environment across a ll processors of

a multiprocessor system introduces complex global communication patterns,

as processing elements may need to fetch data items from anywhere w ith in

the system. Such communications place the heaviest strain on any system.

An answer to th is problem m ight be provided by N UM A systems. NUM A

computers or d istributed memory systems have memory th a t is physically

d istributed amongst the processors. The distributed memory is s till accessible

to a ll processors; however, the access tim e w ill d iffer depending on whether

the requested memory address is local or remote to the requesting processor.

A remote memory access requires communication across the interconnection

network th a t links the processors and thus the distributed memory [23, p. 29].

A generic view of the DMS architecture is presented in figure 2.6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2 . C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 15

P e rfo rm ance conside ra tions. The performance of a distributed memory

multiprocessor depends in large part on the efficiency of the message transfer

system th a t provides the interface between the co-operating processors [23,

p. 203]. Communications, by the ir nature, fa ll into the sequential processing

category and thus can affect parallel systems’ performance. Communication

overheads in h ib it overall system performance. Thus the efficiency of system

communication plays a crucial role in reducing implem entation penalties and

in im proving the scalability of the parallel solution of any problem.

D istributed memory systems use message passing mechanisms to communicate

w ith member computers. Communications among member computers are the

most c ritica l points to support parallel applications in distributed memory

systems [54]. The most w idely used communication in computer clusters is

message passing on an Ethernet network.

E th e rn e t N e tw o rks Ethernet technology was developed in late 1972 at

Palo A lto Research Center (PARC) of Xerox Corporation. The design was

successful and now Ethernet is the predominant LAN technology. The early

Ethernet specifications contributed substantially to the work done by the IEEE

of the 802.3 standard defining the CSM A/CD.

Data on an Ethernet network is transferred in Ethernet frames which are later

encapsulated by T C P /IP frames. An Ethernet frame consists o f the following

sections: l)preambie (8 bytes), 2) destination (6 bytes), 3) source (6 bytes),

4) type/length (2 bytes), 5) data (46-1500 bytes), 6) frame check sequence (4

bytes). An Ethernet frame can vary in size from 64 to 1518 bytes [86].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 16

Message Passing

In figure 2.7 we can see a user level send/receive message passing abstraction

as proposed by Culler [38, p. 39].

Match

Receive (Y, P)

Address YSend (X, Q)

Address X

Local process
address space

Local process
address space

Process QProcess P

Figure 2.7: User-level send/receive message-passing abstraction

There are several techniques to accomplish member communications. There

are widely used programming environment or too lkits for w ritin g parallel pro

grams to run on distributed memory M IM D hardware. Environments such as

MPI, PVM and Linda provide constructs tha t allow a program to perform the

three essential functions [23, p.s 41-54]:

• Define Parallel Execution

• S tart and Stop Execution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 17

• Coordinate Parallel Execution

These environments have been implemented on many parallel architectures,

and are particu larly in demand as possible ways to obtain parallel execution

on LAN-connected workstations. A ll of these implementations use IP and tend

to give latencies in the m illisecond range. [6, p. 249]. From Hobs [65] we learn

th a t execution environments b u ilt on top of an operating system such as PYM

introduce unnecessary overheads, since many of the services provided by the

environment are also offered by the underlying operating system.

The performance of a programming environment needs to be balanced against

ease of use, in particu lar in engineering applications. Rackl [115] has deter

mined tha t in the CORBA’s environment the data overhead is about 30% over

p la in TC P /IP . I t has been determined tha t plain T C P /IP adds hundred to

several thousand instructions per message [48]. However, even though T C P /IP

introduces overhead and has large latency, its overall overhead is only about

4% o f the to ta l transfer [115]. Given the above observations, i t was concluded

tha t p la in T C P /IP socket based communications w ill be used as the message

passing mechanism in the cluster.

One needs to carefully design a d istributed application in order to benefit

from the cluster’s combined power. Contrary to SMS machines, the communi

cations of the DMS machines are very expensive. Matsuda [89] shows th a t the

memory bandwidth of a current PC is at least two orders of magnitude greater

than the bandwidth of a 10M Bit Ethernet network. A summary of latency and

bandwidth of common I/O devices is listed in figures 2.8a and 2.8b. Because

of these constrains it is generally assumed th a t only embarrassingly parallel

applications (tha t is, applications th a t almost never communicate) can make

use of workstation clusters [11].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 18

-10ms
400MB/s

10ns
2ns —

250MB/s

lOMB/s

5MB/s ■ ■

L2 Cache RAM HD Network
LI Cache L2 Cache RAM HD Network 100MBit

100MBit

(a) Latency (b)Throughput

Figure 2.8: Latency and bandwidth of I/O devices

2.2 Parallel Processing

Almasi [6, p. 5] defines the parallel processor as:

“A large collection of processing elements that can com

municate and cooperate to solve problems fast.”

The author quickly adds tha t th is definition raises more questions than it

answers. In figure 2.9 we see a generic scalable parallel processor organization

as proposed by Culler [38, p. 51].

2 .2.1 C om puta tions

Multiprocessor hardware delivers greater power than single processor equiva

lents only when it is properly utilized [134]. The two most common techniques

used on multiprocessor architectures are processes and threads. Quite often a

combination of both techniques is used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 19

N etw ork

N ode

P ro cessor

Communication

M em o ry

Figure 2.9: Generic scalable multiprocessor organization.

Processes

A process is an independent program w ith its own memory for local variables

and a stack for procedure calls. M ultitasking operating systems can run mul

tip le processes simultaneously. A ll running processes are distributed evenly

among a ll processors available in the system. In general, the creation of a

process is an expensive task. The operating system has to allocate memory

space for the process, load the process into memory and sta rt executing it.

Once the process is started, it is d ifficu lt and expensive to communicate w ith

it. In order for d istinct processes to communicate w ith each other they have to

use interprocess communication techniques involving pipes and system calls.

Processes have been extensively employed on multiuser, tim e sharing machines,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 20

to u tilize the hardware efficiently. M u lti processor SMS machines can benefit

from m ultip le processes running concurrently. An example of such an efficient

u tiliza tion is a server computer running a Web server process and a Database

process. Clients connect to the server via the Web and update data in the

database. The server can run both processes concurrently provided it has

enough processors to run them on.

Threads

A thread is an independent procedure running inside a process. A process can

have many working threads. Threads are inexpensive to create and have fu ll

access to process data. This means tha t a program can have m ultip le threads

communicating w ith each other via shared variables, sim ilar to the way pro

cedures communicate w ith each other. Thread oriented operating systems are

capable of assigning program threads to separate processors. This phenom

enon is very beneficial, since it is possible to develop m ultithreaded programs

and take advantage of multiprocessor hardware. The operating system, run

ning a multithreaded process, would schedule the processes’ threads to run on

d istinct processors, and thus higher throughput could be achieved [134].

Threads are commonly used on SMS machines. There have been numerous

attem pts to extend the thread programming paradigm to the DMS environ

ment; however, so far none has been very successful [124].

T hreads vs. Processes. Industry studies show th a t it is much more ex

pensive to create, and context switch a process than a thread. A new U N IX

process takes about 11 times more tim e to create than a new thread on the

same computer. The same studies show th a t it takes 5 times more tim e to

switch between U N IX processes than to sw itch between threads belonging to a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 21

common execution environments. The context switch cost is most im portant

because it is incurred many times in the lifetim e of a program [32].

2.2 .2 C om m u n ication s

D istributed applications running on a cluster computer need to communicate

w ith each other and access global data. In section 2.1.1 we learn tha t cluster

computers fa ll in to the M IM D category. Such machines cannot use shared

variables for communications. SMS systems could use inter-processes com

munications as described above. DMS machines, however run processes on

physically d istinct machines. The most common way of communications on

such systems are remote procedure calls, which are commonly implemented

via sockets [20].

Data Transfer

A network computer or computer cluster is heavily dependent on the in ter

connecting infrastructure. Such machine communicates w ith cluster members

using network. In order to evaluate performance several concepts need to be

identified and measured.

Data Transfer Time. The tim e required for a data transfer operation is

generally described by a linear model:

Transfer Time = To + -y-[s]
B

where n is the amount of data (usually in bytes), B is the transfer rate o f the

medium (in comparable units to n, usually bytes/sec) and To is the start-up

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 22

cost. This model is used w idely to describe a diverse collection o f operations,

memory accesses, bus transactions, and message passing. Culler also notices

tha t the bandw idth of a data transfer operation depends on the transfer size;

as transfer size increases, it approaches the asymptotic rate o f B, which is

sometimes referred to as r ^ . How quickly it approaches th is rate depends on

the start-up cost. I t is easily shown tha t the size at which ha lf of the peak

bandw idth is obtained, the half-power point, is given by:

C om m u n ica tio n Time Communication tim e is the tim e th a t is required to

establish communication and to transfer data between cluster members. The

follow ing model is used to describe th is operation:

Communication Tim e(n) = Overhead + Occupancy + Network Delay

where Overhead is the tim e spend by the processor preparing the message and

in itia tin g the transfer, Occupancy is the tim e it takes for the data to pass

through a ll components on the communication path (hubs, switches, routers)

and Network Delay is the remaining communication tim e (access to media,

collisions, etc.)

C om m unication C ost From the performance point of view the most im

portant fact is the Communication Cost. The follow ing model was proposed

by Culler to define the communication costs:

Communication Cost = Frequency x (Communication Tim e - Overlap)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2 . C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 23

where the Frequency is the number of communication operations per unit of

work in the program and the Overlap is the portion o f the communication op

eration th a t is performed concurrently w ith other useful work (computations

or other communications) [38, pp. 60-63].

System overhead

We realize th a t network communication involves more than jus t the transport

medium. Several factors have been identified tha t contribute to the overall

performance and capabilities of a network communication layer [68].

Context Switching. The difference between special purpose HPC systems

and cluster workstations begins to disappear, as programs are now running

in a multiprocess environment. This makes context switching overhead hard

to avoid. This is particu larly visible when one overlaps communication w ith

com putation.

System Call Overhead. In an operating system such as L inux it is the ker

nel’s task to access the actual networking hardware via a system call, shielding

the hardware from the application for p o rta b ility and security reasons. The

approach also allows for sharing of the hardware between different applica

tions. I f direct access to the hardware by an application is allowed a significant

speed up can be obtained. This is however not acceptable for a large number

o f application domains th a t use the network.

In te r ru p t / S igna l Latency: Network interface cards communicate w ith CPU

through interrupts signaling finishing sending or receiving data. Handling in-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 24

terrupts causes overheads. Quite often those interrupts are propagated to the

user space and further degrades the performance.

S em antics. The semantics expected by programs or interface definitions of

ten do not match the most optim al way o f sending or receiving data. Conve

nience does not match efficiency. W hile near optim al communication speed can

be reached for simple operations, th is w ill not be possible in practice for more

sophisticated operations such as m ulticasting and non-blocking operations.

Reliability. Software communication layers must deal w ith packet loss on

the hardware level. T C P /IP implements th is by using sequence numbers and

acknowledgments which in tu rn lead to overhead.

2.3 Parallel Processing Examples

The previous section outlined several problems tha t a cluster designer must

face when designing a cluster. The follow ing section gives two examples of

th inking in parallel.

2.3 .1 E m p ty in g a sw im m in g p o o l using pails.

Openshaw [109] maps parallel processing to tasks occuring in everyday world

using the follow ing example. Consider the problem of emptying a pool using

a pail. I f one worker would need T tim e to empty the pool then quite like ly

ten workers would empty the pool in approximately T j 10 tim e and N persons

could empty the pool in T /N time. We know tha t the pool is of fin ite size

and tha t it contains X pails of water. W hile th is is a clear parallel task (each

person could carry a pa il of water independently), it is very unlike ly th a t the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 25

pool would be emptied in one u n it o f tim e if X workers were used. There

are several possible aspects th a t can affect the tim e required to complete the

operation. For example, there m ight not be enough space to accommodate

more than W workers, adding more than W workers would cause collisions

and serious congestion in gaining access to the pool (shared resource). We

can also observe th a t a possible saturation has occured when the workforce

reached W workers. Introducing additional workers would mean th a t some of

the workers already working would have to be retired or slowed down.

2.3 .2 A ssem b lin g a hard disk using a p ip e lin e.

One m ajor disk manufacturer produces hard drives tha t are assembled sequen

tia lly in various plants around the world. Casing is produced in the USA. The

casing is then shipped to the U K where the motor is mounted. The platters

are mounted in Malaysia and the head assemblies are mounted in Taiwan. The

finished product is sent to the USA. As long as the pipeline is filled and the

flow can be sustained, a ll plants are working together to produce the product.

I t is often the case tha t a flaw is discovered in a batch of components. The

entire pipeline is affected by the problem. I f the problem is discovered late

in the process, i t m ight take weeks before the flow of the finished products is

restored. The process can not be sped up by adding additional factories, as

they w ill not help the process.

The above examples illustra te typical problems tha t a developer must face

while designing and implementing a parallel processing machine. Insta lling

more processing entities than there is work w ill not help solving the problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 26

Moreover communications between the processing entities should be consid

ered and kept to the minimum, especially i f the processing entities do not

share memory.

2.4 Parallel Performance

Quite often FLoating point OPerations (FLOPS) are used to describe the com

puting power of a computer. W hile it is possible to use FLOPS to describe

the theoretical com puting power o f a cluster computer, i t is quite often an un

realistic figure th a t does not describe the performance of a cluster computer.

I f one were to use FLOPS as a measure of the computing power of a cluster,

one could use the follow ing formula:

N

Power = Y , M ^ i n e i FLOPS
i = l

Summing the FLOPS of a ll machines participating in the cluster would give

the theoretical performance of a cluster in FLOPS. That figure could only

be used if a ll machines could work continously on a given problem at the ir

peak speed. That form ula does not consider inter processor communications,

job scheduling overhead and processor synchronization problems. Figure 2.10

illustrates how those factors im pair overall system performance. This figure

shows two systems. The firs t one is a single processor machine computing in

a sequential manner. 80% of the computing tim e is spent perform ing ‘busy-

useful’ operations and 20% of the time is spent on accessing data. The second

system consists o f four machines computing in parallel. F irs t we note tha t

the to ta l execution tim e of the second machine is not four times shorter than

the firs t. The second system has several aspects it needs to deal w ith. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 27

busy-useful fraction is close to 20% but we also have factors such as busy

overhead (instructions not needed in sequential program), data remote (tim e

spent w aiting for remote data) as well as interprocess synchronization issues

[38, p. 157],

In order to describe accurately the cluster’s performance it is proposed tha t

two terms be used: SpeedUp and Efficiency. SpeedUp describes how much

performance gain is achieved using the cluster. Efficiency shows how efficient

the cluster participants utilized in the cluster are.

S
H

50

25

■ Busy-useful I Busy-overhead

S Data-local i Data-remote

■ Synchronization

Seqential Computing Parallel Computing with four processors
with one processor 3

Figure 2.10: Components of execution tim e from the perspective of an ind i
vidual processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 28

2 .4 .1 S p eed U p

SpeedUp is defined as:

_ 1TT Time required for one processor to compute a task
SnppaUT) — -------- ------------

Time required for N processors to compute a task

or we could also w rite th is in the follow ing way:

SpeedUp =

B u s y (T i7 n e ip rocessor') -)- ly c it(iiocaj {T ivn>e-\pToresS or)

B u s y useful (N) T D tttd igca l (A ') T S y n c h (N) ~{- U Od(lT v/moi e { U i -p J3 II S JJ ov head (N]

SpeedUp can be a number from 0 to N , where N is the number of proces

sors present in the system. Ideally we would like to achieve the so called perfect

SpeedUp, which is a linear function: SpeedUp = N i.e. I f a problem takes

T tim e to compute on one processor, the same problem run on N processors

would be computed in Perfect speedup is rarely achieved in practice. A l

gorithm s th a t achieve linear SpeedUp are called completely parallelizable, and

not surprisingly, are highly desired [6, p. 195].

Superlinear SpeedUp

Superlinear SpeedUp is defined as a speedup tha t is greater than the number

o f processors used. Superhnear Speedup is achieved when a large sequential

problem can be mapped efficiently on a set of processors participating in the

experiment. The data and the code of a large problem quite often would not

entirely f it into memory and cache. Given m ultip le processors a problem could

be divided in such way tha t every processor computes only on a fraction of the

entire dataset. Then each processor could u tilize its cache and registers more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 29

efficiently and superlinear speedup could be achieved. Superlinear speedup

usually indicates th a t the sequential problem had cache miss or page fau lt

problems.

2 .4 .2 Efficiency

Efficiency is a measure of parallel performance tha t is closely related to speedup.

We define efficiency as:

77, x x- • SpeedUpE ff ic ie n c y = -----—-----

One could define efficiency as the average speedup per processor. In a com

puting cluster it is not very like ly tha t every processor w ill devote 100% of

its tim e to cluster computations. Efficiency measures the fraction of tim e the

processors are being useful. The range of efficiency lies between 0 and 1. When

efficiency is equal to 1 th is corresponds to perfect speedup of:

SpeedUp — N

Efficiency Exam ple

Consider the problem of m u ltip ly ing a vector of 100 elements by a scalar S.

The pseudocode to perform such operation would be w ritten as follows:

For i = 1 To 100

Xi = X i * S

Next i

I f th is operation is performed on a single processor and the tim e required to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 30

perform one iteration is t then the computation will take

SingleProcessorT ime = lOOf

I f the operation is performed on a computer w ith eight processors, the follow

ing strategy could be employed. Each of the eight processors would perform

equal number of m ultip lications and the remaining m ultip lications would be

performed by a single processor. In our case seven processors would perform

twelve m ultip lications and one processor would perform twelve m ultip lications

together w ith the seven processors and then it would perform four m ultip lica

tions. The to ta l execution tim e would then be 12£ + 41 — lQt

The SpeedUp is then calculated as:

SpeedUp8CPt/ = ^ = 6.25

The Efficiency is calculated as:

6 25
Efficiency$C p u = ~ g- = -78125 or 78.125%

The less than perfect SpeedUp is due to load imbalance.

2 .4 .3 A m d ah l s Law

There is considerable skepticism regarding the v ia b ility of massive parallelism;

the skepticism centers around Am dahl’s law, an argument put fo rth by Gene

Amdahl in 1967 [7] according to which even when the fraction of serial work

in a given problem is small, s, the maximum SpeedUp obtainable from even

an in fin ite number of parallel processors is only 1/s .

I f N is the number of processors, s is the fraction of tim e spent (by a serial

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 31

processor) on serial parts of a program and p is the fraction of tim e spent (by

a serial processor) on parts of the program tha t can be done in parallel, then

Am dahl’s law says th a t speedup is given by

SpeedUp = — —̂zr
S + N

where s + p — 1

The range of s lies between 0 and 1 (0% and 100%). When s — 0,

then SpeedUp = N and perfect parallelism is achieved. When s = 1, then

SpeedUp = 1, and there is no benefit from parallelism . SpeedUp is lim ited

by the fact th a t not a ll parts of our code can be run in parallel. Even if an

in fin ite number of processors is used, the SpeedUp is s till lim ited by 1/s [53,

pp 24-26]. The sequential fraction s has a strong effect on SpeedUp. This

explains the need for large problem sizes. As the problem size increases the

opportun ity for parallelism grows, and the sequential fraction decreases and

reduces its importance for SpeedUp.

Quinn [114, pp 45-47] reevaluates Am dahl’s law. He states tha t i f a large

fraction of sequential code is identified i t should be performed by the fastest

partic ipating processor and it should preferably be overlapping other code tha t

could be done in parallel. Quinn also adds tha t parallel computers w ill be

able to compete w ith supercomputers only i f they have at least one processor

capable of extremely fast sequential operation or i f they execute algorithms

w ith v irtu a lly no sequential component.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 32

SpeedUp
32

2 CPUs

- * - 4 CPUs

—* —8 CPUs

16 CPUs

~ 32 CPUs

4 ----- 1

Serial Fraction

5% 6%\%

Figure 2.11: Am dahl’s Law SpeedUp

2 .4 .4 S p eed U p L im itations

In practice quite often one encounters problems tha t cannot efficiently be

solved on parallel architectures. The SpeedUp can be affected by several as

pects. Richardson [118] identifies the follow ing SpeedUp lim itations:

• I/O

• Memory Contention

• A lgorithm

• Problem Size

• Load Imbalance

• Sequential Code

• Parallel Overhead

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 33

:ncy

2 CPUs

4 CPUs
8 CPUs

16 CPUs
32 CPUs

30%

10%

Serial Fraction0%

1% 2% 7% 8% 9%0% 3% 4% 5% 6% 10%

Figure 2.12: Am dahl’s Law Efficiency

There are many problems involving continuous I/O operations. I f a problem

is I/O bound the slow (and very like ly sequential) operations take more tim e

compared to the amount of computation.

In the m ajority of cases computer algorithms deal w ith any problem in a

sequential manner tha t is not suitable for parallel computers. Parallel versions

of sequential algorithms need to be designed and implemented to u tilize parallel

hardware. SpeedUp is almost always an increasing function of problem size.

The size of the problem can affect the way it can be solved. I f a problem

is tr iv ia l or too small to take best advantage of a parallel computer then it

cannot be computed efficiently on a large parallel system. In other words, if

there is not enough work to be done by the available processors, the system

w ill show lim ited speedup. By the same token, i f a problem size is fixed

and it can be solved w ith a given set of processors, it w ill not benefit from

additional hardware. Adding more processors w ill not reduce to com putation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 34

tim e and in some cases it even increases computing time. Figure 2.13 shows

two curves. The ‘optim um tim e’ curve shows the execution tim e as a function

of the number of processors present in the system. Such result is what one

would like to expect from a parallel computer. A more realistic curve is the

‘actual tim e’ curve. The curve shows an in itia l decrease in the time taken

by the example problem on the parallel system up to a certain number of

processing elements. Beyond th is point, adding more processors actually leads

to an increase in computation tim e [23, p. 78].

100%
-#— Optimum Time

-■— Actual Time
80%

60%

40%

20%

90 100
Processors

Figure 2.13: Optim um and actual parallel implem entation times

In section 2.4.2 it was demonstrated how load imbalance can affect SpeedUp

and overall efficiency. A designer w ill attem pt to map a given problem onto

parallel hardware, but quite often the processors w ill have unequal workloads.

This causes some processors to idle as they w ait for other processors to finish

the ir work. Am dahl’s law demonstrates the effects of the sequential part of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 35

code on the overall performance. In general, most computer programs have a

sequential nature. This lim its speedup as shown by Am dahl’s Law. Figures

2.11 and 2.12 show how even a small fraction of the sequential code can affect

the SpeedUp. Parallel programming introduces additional overhead. Parallel

algorithm is almost always larger and more complicated than a sequential

equivalent. A dd itiona l processor cycles are required to create parallel regions,

threads, synchronizing threads, and spin/blocking threads.

2.5 Performance Evaluation of the Cluster

A firs t step in evaluating a real machine is to understand its basic perfor

mance capabilities-that is, the performance characteristics of the prim itive

operations provided by the programming model, communication abstraction

and hardware/software interface. The two most common ways of evaluating

system performance are microbenchmarks and workloads [38, pp 215-217].

2.5 .1 M icr ob enchm arks

Microbenchmarks are small, specially w ritten programs designed to isolate

performance characteristics such as latencies, bandwidth, overhead, etc.

Five types of microbenchmarks are used in parallel systems:

1. Processing microbenchmarks measure the performance of the processing

capabilities of the machine.

2. Local memory microbenchmarks determine the organization, latencies,

and bandwidths of the levels of the memory hierarchy w ith in the local

node and measure the performance of local read and w rite operations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 36

3. Input-output microbenchmarks measure the characteristics o f I/O ope

rations, such as disk reads and w rites of various strides and lengths.

4. Communication microbenchmarks measure data communication opera

tions such as message sends and receives or remove reads and writes of

different types.

5. Synchronization microbenchmarks measure the performance of different

types o f synchronization operations, such as locks.

The developed cluster had distributed memory; therefore, only results from

microbenchmarks 1, 3, 4 and 5 w ill be analyzed and discussed.

For measurement purposes, microbenchmarks are usually implemented as re

peated sets of p rim itive operations (e.g. 1000 floating point operations on data

in a row). They often have simple number of parameters tha t can be varied to

obtain fu lle r characterization. For example, one can vary the amount o f data

to calculate, or change the number of processors processing the data.

2 .5 .2 W orkloads

Workloads can be divided into three classes:

1. Kernels

2. M ultiprogrammed workloads

3. Complete applications

Kernels are well-defined parts of real applications but are not complete applica

tions themselves. Kernels usually provide computing facilities for applications

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 37

but do not support any communications, or vice versa. Multiprogram m ed

workload tests involve running m ultip le applications on the same system si

multaneously. The overall performance of the system is observed. The cluster

discussed in th is thesis is providing computing facilities for specialized engi

neering calculations. The main objective of the workload handling capability

should be the performance evaluation of the machine when running engineer

ing programs. Three popular applications were implemented and run on the

cluster and the performance o f the cluster was then observed. The three ap

plications developed were: m a trix m ultip lication, two-dimensional FFT and,

finally, electric fie ld approximator.

M atrix Multiplication

M atrix m ultip lica tion is a fundamental part of many complex science and en

gineering applications [23, p. 25]. The algorithm is re latively com putationally

intensive and is very often used to assess the performance o f computer systems

[10], [23], [51], [56], [70], [96].

The product of two matrices is represented as [C\ = [A] [B] , where the elements

of [C\ are defined as [24]:
n

Ci,j — A ifiB k j
k~l

A sequential m atrix m ultip lica tion algorithm m ight be implemented in the fo l

lowing way:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2 . C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 38

For i = 1 To m

For j = 1 To 1

C ij = 0

For k = 1 To n

C i, j C i j T ^ B h j

Next k

Next j

Next i

Such code is well suited to a highly parallel M IM D design with processors

powerful enough to carry out substantial computations on the ir own [6, p.

307]. M a trix m u ltip lica tion is an inherently parallel a lgorithm w ith well-

defined points o f synchronization and is thus well suited to implementation

on a cluster computer. Consider the m ultip lica tion of two n x n matrices per

formed by p processors. A balanced workload is achieved by allocating each

processor a sub-problem of computing the x n) x (n x j*) subm atrix of the

problem. These operations may be carried out in parallel by p processors.

The best solution o f the m ultip lica tion of the two n x n matrices on p < n2

processors is achieved in O (y) , provided tha t communication tim e is much

smaller than com putation tim e [23, p. 32].

A d istributed version of the m atrix m ultip lica tion algorithm listed above was

implemented and used to evaluate the cluster’s performance.

F F T

Fourier transform is a powerful too l for many problems, and especially for

solving various differential equations of interest in science and engineering [50,

p 1], The Fourier transform algorithm has a complexity o f 0 (n 2). The most

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 39

popular implementations of the transform are based on an algorithm proposed

by Cooley and Tukey. The so called fast Fourier transform , or F F T as we w ill

refer to it, has a lower computational complexity of only 0(n log (n)). Sim ilar

to matrix m ultip lica tion the FFT algorithm is frequently used to measure the

performance o f computer systems [6], [51], [70], [101], [117].

2D-FFT. The tw o-dimensional Fourier transform is required in applications

tha t involve two-dimensional data sets, such as image processing and geophys

ical analyses [44],

Let [A] be an L x M 2-dimensional complex m atrix. The L x M 2-dimensional

transform of [A] denoted by T(Al,m) is the L x M 2-dimensional array [B]

defined by:

M - 1 L—1
p V '' V~' a 2 -x ir l/L 2 n is m /M
■D r,a — / . / , ra,™

m —Q 1=0

which can be w ritten in a compact m atrix notation:

[B] =

This method is called row-column because it computes [B] by a sequence of

1-dimensional fin ite Fourier transforms of the rows of [A] followed by a se

quence of 1-dimensional fin ite Fourier transforms o f the resulting columns.

The m atrix [B] is computed in two stages. F irst an interm ediate m atrix of

Fourier transforms of the rows is computed, then a second series of Fourier

transforms of the columns is performed on the resulting m atrix. Computation

of an IV x A -point 2-D Fourier transform requires 2N complete, 1-D FFT

calculations. The cost o f such a com putation would be 2N (N lo g (N)) plus

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 40

the communication overhead. Communication during the d istributed compu

ta tion requires four transfers of the N x N m atrix.

Consider the computation of 2-dimensional FFT on a N x N data matrix

computed by p processors. A balanced workload is achieved by allocating

each processor a sub-problem of computing the (f x N) subm atrix of the

problem. These operations may be carried out in parallel by p processors.

The best solution of the com putation is achieved in Q (2iY(JVK JV))), plus the

communication costs.

A popular FFT program suite [90] has been adapted and modified to com

pute the two dimensional FFT on the cluster computer and to evaluate the

cluster’s performance.

Electric Field Approximator

Numerous problems tha t arise in engineering can be visualized as a 2-dimensional

grid where the values of the ind ividual elements vary over tim e in response

to the values of neighbouring elements. Examples of such problems include

electric fie ld intensity, therm al conduction, oceanographic sim ulation, and

atmospheric modeling. P artia l D ifferentia l Equations (PDE’s), having well

known solution techniques, can be expressed in a data parallel fashion using

arrays to store a discretized representation of the problem [34], G rid or mesh

techniques are frequently used to approximate the states of continuous enti

ties th a t behave in a wave-like or flu id fashion. Problems where each po in t in

the grid has the same computational requirement are quite often called uni

form. P artia l D ifferential Equations are commonly used to solve uniform grid

problems. Laplace’s equation governs steady-state d istribu tion of electrical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 41

potentia l on a plane [116]:

o d2u d 2u n . .
+ ^ = 0 (2-1)

The derivatives can be replaced by the fin ite difference approximation:

f " (x) « + h) ~ 2f (x) + f (x - h)j (2.2)

W hich yields the formula:

V 2 ~ 2̂ [u (x + + w(x - y) + M(®, y + h) + u(x, y — h) ~ 4u(x, y)] (2.3)

Setting V 2 = 0 and h — 1 (grid granularity) produces an algorithm th a t can

be used to calculate any value on the grid whose dimensions are [x + 1] x [y + 1]:

u(x, y) « i[u (x + 1 ,y) + u(x - 1, y) + u{x, y + 1) + u(x, y - 1)] (2.4)

A sequential mesh calculation algorithm m ight be implemented in the fol

lowing way:
For y — 1 To m

For x = 1 To 1

A X,y — i - ^ - X + l , y + t y -j- A x,y+1 T A X j y — l) / 4

Next x

Next y

Depending on the size of the grid the above calculation might have to be re

peated several times in order to achieve accurate results. The number of

iterations required w ill vary from one grid problem to another.

Such code is frequently implemented on SISD machines, since the values of a ll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t i n g : T h e o r y a n d A p p l ic a t io n s 42

data points depend on the values of a ll elements of the grid. The com putation

of N x N grid points requires N 2 floating point divisions and 3N 2 floating

point additions, and the execution times become very long when N is suffi

ciently large. The com putational complexity of the algorithm 0 (n 2) makes i t

an attractive problem to be implemented in a d istributed environment.

D istributed im plem entation of th is algorithm requires partition ing of the grid

and assigning the partitions to every computer partic ipating in the compu

tation. This pa rtition ing and assignment of the data is usually done by one

machine, which is aware of a ll the machines partic ipating in the computa

tions. Since the computed data reside on machines physically d istinct from

each other, additional communications are also required in order to ensure

correct grid values at the pa rtitio n boundaries. The communications can ei

ther take place among the participating machines or they can be performed

between the participants and the machine acting as a server. The later ap

proach was chosen, as it is the server tha t assigns data to the participants.

The server is also aware of the boundaries resulting from the partition ing of

data. Communications can be performed either in a synchronous or an asyn

chronous manner. Since a ll participants had the same CPU and the number

of data points required to compute, the grid values, at the boundaries is only

4N per participant, the synchronous type of communication was chosen and

implemented.

Consider the calculations of the grid values of an n x n m atrix performed by

p processors. A balanced workload is achieved by allocating each processor

a sub-problem of computing the x n) subm atrix of the problem. These

operations may be carried out in parallel by p processors. The best solution

of the calculations of the grid values of n x n m atrix on p < n processors is

achieved in 0 (~) , provided tha t communication tim e is much smaller than

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 43

com putation time.

A d istribu ted version of the mesh algorithm listed above was implemented and

used to evaluate the cluster’s performance.

2.6 M odeling

The physical principles underlying the behaviour of most electronic devices

are fa irly complex, although the actual electrical behaviour of the device may

be quite straightforward. Rather than attem pt to relate physical effects of the

device d irectly to network analysis, an intermediate step can be undertaken.

This step is generally represented by the behaviour o f the device by voltage-

current or other appropriate components such as resistors, voltage or current

sources or other ideal elements. In the la tte r case, the device is easily analyzed

in terms of c ircu it theory.

For classical analysis the standard approach has tra d ition a lly been to apply an

equivalent c ircu it to linear (small-signal) problems. E ither a graphical analysis

or piecewise linear analysis is applied to the solution of large signal circuits.

Large-signal or nonlinear networks are often too d ifficu lt to analyze, and it

is not uncommon to resort to several sim plifying assumptions to obtain an

approximate solution. Frequently, problems m ight require a large volume of

calculations if a high degree of accuracy is to be maintained. Thus w ith manual

analysis it is almost always necessary to sim plify the device model to reduce

the com plexity of the overall circuit/system [31, p 221].

An attem pt was made to produce several models tha t characterize/ resemble

the behaviour o f the designed system. Modeling in th is sense is the process

th a t represents the electrical properties of a device or interconnected device by

means of mathematical equations, c ircu it representation or tables. Complex

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u tin g : T h e o r y a n d A p p l ic a t io n s 44

devices and large scale systems are characterized by macromodels tha t re

flect th e ir behaviour. Modeling at both levels, device and term inal, is equally

im portant. Device level models are used for accurate analysis and design

of smaller networks. Eventually, i f these networks represent typ ica l building

blocks in larger systems, macromodeling is used to sim plify the representa

tion and speed up the analysis. Frequently, device inform ation/behaviour w ill

be obtained through a series o f experiments and then the designer is faced

w ith the task of implementing and constructing a model of the system from

measured data. Physical device models usually involve a number of mathemat

ical equations. Typical tim ing studies have shown tha t the m ajor problem in

analysis is in evaluating these complicated relationships. Further, most analy

sis methods also require derivatives of the model equations-a cumbersome and

error-prone task for the designer. For these reasons, increasing use is being

made o f approximations of the model equations [136, p. 308].

2.6 .1 L inear M od el

Since resistors, capacitors, inductors, switches and ideal sources can be ana

lyzed in an orderly manner, frequently an attem pt is made to relate devices

such as active circuits to these elements. The basic elements have known

voltage-current characteristics tha t can be characterized by constant, tim e-

invariant parameters. Many im portant applications require the device to op

erate over only a small area of the possible operating region w ith in which the

characteristics w ill be approximately linear. A disadvantage of th is method

is tha t once the device is modeled by constant-parameter elements, the area

over which linear operation takes place is not apparent. Thus a given input

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 45

signal, applied to the actual c ircu it, may be large enough to cause a highly

distorted output, while the c ircu it model w ill predict a non distorted output.

Some attention is then required in prescribing the limits over which a given

model is valid, especially when autom atic analysis programs are utilized [31,

p 223].

2.6 .2 N on lin ear M od el

Simple circuits can be used to model complicated systems only when the sys

tem ’s operating region is small. Frequently the nonlinearities inherent in the

device characteristics begin to d isto rt the response of the actual system. In

order to describe the system’s nonlinearities one must resort to sophisticated

modeling techniques. One method for analyzing nonlinear circuits is that of

piecewise linear approximation. The nonlinear characteristics are averaged

over the swing of interest and represented approximately by linear character

istics. A linear c ircu it model yielding the lin earized characteristics can then

be proposed. For devices passing from one operating region to another, a

different, linearized equivalent c ircu it can be proposed for each region [31, p

229],

2 .6 .3 D iscrete System s

Discrete systems are d ifficu lt to model in a linear fashion. Frequently a trans

form ation of the discrete system needs to take place before continuous mod

eling techniques can be used. In order to perform continuous modeling of the

response of a system, one needs to analyze it as a system th a t changes in tim e.

Example of such transform ation can be a transform ation o f a com putational

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 2. C l u s t e r C o m p u t in g : T h e o r y a n d A p p l ic a t io n s 46

task involving a series of computations whose length or com plexity increases

when the calculations of the last computation are complete. The to ta l tim e

required to perform the computations is the sum of the com putation times

of the varied sized problems. The system response is recorded at the end of

each iteration and the data is plotted. The intervals at which the response is

recorded increase w ith the increase of the data on which the system computes.

Frequently only selected regions o f the system response can be modeled w ith

a satisfactory level of accuracy using one modeling technique. Often m ultip le

models need to be devised to accurately model the entire response of a com

plex system.

Modeling the performance of distributed systems requires identification of c rit

ical phenomena affecting the response of the system. In d istribu ted environ

ments, the performance of the I/O and floating point components plays an

im portant role. In th is thesis we w ill attem pt to identify and study the per

formance of the above identified, c ritica l cluster components. Later we w ill

attem pt to develop a discrete and a continuous model of the designed system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3

Apparatus

The previous chapters specify tha t one of the objectives of the experiment

was to develop a machine tha t would have a high performance to price ratio.

In order to accomplish the task the cluster needed to be implemented using

commodity commercially available parts. The follow ing hardware components

were identified as the absolute minimum:

• C luster Server

• Several C luster Members

• Network Connections

Adaptation o f standard software, operating system and networking software

was also identified as one of the factors tha t influenced the development of the

cluster. L inux operating system was chosen as the development platform . A ll

popular Linux d istributions come w ith development tools such as compilers,

debuggers and related literature. For details and history of L inux please refer

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 3. A p p a r a t u s 48

to the appendix. The networking details of the implemented cluster w ill be

addressed in the next chapter.

3.1 Server

The server computer was the only computer assembled from new parts. W hile

it was not crucial to bu ild a fast machine to coordinate cluster activities, it

had to meet several requirements. The follow ing services had to be provided

by the server:

• Development platform (a ll code was compiled on the server)

• Network management:

1. NFS server

2. TFTP server

3. BOOTP server

4. DHCP server

5. Telnet server

• Cluster coordination

• Experiment data collection and management

Several observations should be made at th is point. F irstly, we realize th a t the

server m ight potentia lly be required to perform several tasks simultaneously.

A multiprocessor architecture, while not required, would help ensure the accu

racy o f the experiment results being recorded. Secondly, we observe th a t the

server w ill be providing file services for several cluster members as well as for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 3. A p p a r a t u s 49

itself. A dedicated disk should be allocated to each task i f possible. Lastly,

we note tha t the server w ill be providing a variety of network services to the

cluster members partic ipating in the experiment. A fast Ethernet network

card, possibly m ultip le cards, should be installed in the server.

3.1 .1 Server H ardw are

The server was assembled using commercially available parts which were pur

chased at a local computer store. The follow ing is a lis t of components used

to assemble the server:

• Dual Processor Pentium 11/Pentium I I I Motherboard

• Two In te l Pentium I I I processors

• 128MB of SDRAM memory

• Two U ltra 2 SCSI hard discs

• AGP Video Card

• Fast Ethernet Network Card

• Tower Case

3 .1 .2 Server Softw are

The RedHat d istribu tion of L inux was the operating system o f choice. The

RedHat flavour of L inux comes w ith several development tools. This d is tri

bution also has a ll networking software tha t was needed to set up a network

management system required for the experiment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 3. A p p a r a t u s 50

make c o n fig
make dep
make clean
make bzlmage
make l i l o
make modules
make m o d u le s_ ln s ta ll

Figure 3.1: SMP support kernel com pilation

Kernel Configuration

Most L inux d istributions do not provide a kernel tha t is multiprocessor aware.

In order to enable the SMP support one needs to compile a custom kernel and

enable several configuration options. The follow ing options need to be selected

while compiling [94]:

• Processor Type and Features:

M TRR (Memory Type Range Register) support: ENABLED

Symmetric multi-processing support: ENABLED

• General Setup:

Advanced Power Management BIOS support: D ISABLED

RTC (Real Time Clock) support: ENABLED

Like most U N IX kernels, L inux kernel, is m onolithic but i t is possible to use

kernel modules for device drivers. I t is necessary to recompile a ll modules to

enable the SMP support. Figure 3.1 lists the commands th a t need to be issued

to compile and activate the SMP support on RedHat L inux operating system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 3 . A p p a r a t u s 51

p rocesso r 0 p rocesso r 1
vendor_ id G e n u in e ln te l vendor_ id G e n u in e ln te l
cpu fa m ily 6 cpu fa m ily 6
model 7 model 7
model name Pentium I I I (Katm ai) model name Pentium I I I
s te p p in g 3 s te p p in g 3
cpu MHz 451.026194 cpu MHz 451.026194
cache s iz e 512 KB cache s iz e 512 KB

bogomips 450.56 bogomips 448.92

(a) Processor 1 (b) Processor 2

Figure 3.2: L isting o f /e tc /p roc file

The multiprocessor kernel operation can be determined in two ways. F irstly,

one can examine kernel messages at the boot when the kernel tries to detect a ll

processors and activate them. Secondly, the inform ation about the system’s

CPUs can be found by examining the contents of the /p roc/cpu in fo v irtu a l

file. The inform ation obtained from the /proc/cpu in fo file is shown in figure

3.2.

D eve lopm en t S o ftw are

RedHat 6.1 L inux comes bundled w ith program development software (com

pilers and libraries) as well as the documentation useful for programmers and

system developers. A lis t of packages installed on the server can be found in

the appendix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 3. A p p a r a tu s 52

3.2 Cluster Member

In order to b u ilt an inexpensive cluster one could use computers tha t have

been previously deployed and are reaching the end of the ir productive life

cycle. Such machines are often found in computer laboratories or libraries.

Several Pentium class computers were obtained and modified to participate in

the experiments.

3.2 .1 H ardw are C onfiguration

The hardware requirements for a cluster participant were very modest. I t was

determined th a t a computer consisting o f the parts listed below would fu lly

suffice:

• CPU: Pentium class

• Memory: 16MB or more

• Floppy Drive: 3.5” , 1.44MB

• NIC: Ethernet 10M Bit or 100MBit

• Hard Drive: optional

• Video: optional

• Keyboard: optional

A ll cluster member computers came w ith local hard disks, video cards and

keyboards bu t these items were not d irectly utilized. None of the computers

contained a local copy of the operating system and the computers booting

were not booting of the local hard drive. A ll machines were booting of the

server via network. However, the hard drive was utilized. In order to m inim ize

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 3 . A p p a r a t u s 53

network tra ffic and avoid system swapping via network, the swap pa rtition of

each cluster member was mounted on its local hard drive. The remaining pe

ripherals (video cards and keyboards) were not used after the in itia l setup was

performed. Most modern computers can be “to ld ” to operate w ithout a video

card or a keyboard by m odifying settings in the computer’s BIOS.

3.2 .2 Softw are C onfiguration

As stated in the previous section, each cluster member was booting of the

cluster server via the network. In order to accomplish th is task two issues

need to be addressed. F irstly, the booting computer has to be to ld , and be

able, to use the network card as its booting device. Secondly, a customized

version of the operating system needs to be available to the booting computer

at the tim e of the boot.

Network Boot

The firs t task can be accomplished via the means of a BOO T ROM in the

network card of a cluster member. The second approach is to provide the

computer w ith an image of the operating system on a floppy disk. Each ap

proach has its benefits, but it also has some drawbacks.

Creating BOOT ROMS requires th a t one obtain BOOT ROM images o f each

network card used in the cluster. Such images are often subject to copyright

agreements and are in general d ifficu lt to obtain. The second problem w ith

such an approach is th a t one needs to physically remove the ROM chip from

the network interface card when one does not want to boot from the network.

On a developmement system one quite often needs to m odify the kernel image

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 3 . A p p a r a t u s 54

of a cluster member. Each such a m odification would require the creation of a

new set of boot floppies; booting from a floppy drive is also much slower than

booting from a hard drive or via the network.

A feasible compromise would be to provide the BOOT ROM code to the com

puter on a floppy disk. Several free (Linux based) software packages provide

BOO T ROM images tha t could be burned into an eeprom and then used for

network booting. The etherboot package allows developers to test BOOT

ROM images p rio r to EEPROM burning. The etherboot software package

allows for the creation of boot floppy disc containing only the BOO T ROM

code (8KB). This was a perfect compromise between a commercial BOOT

ROM and a fu lly blown OS image on a floppy. The BO O T ROM code is

loaded in less than a second and then the network boot takes place. Changes

to the cluster member’s kernel can be made in one central location and they

w ill be picked up by booting cluster members. I f a computer partic ipa ting in

the experiment for some reason needs to be used for other tasks, it can be used

w ithout the need to open the case and remove the BOOT ROM.

The boot process can be divided into the follow ing steps:

1. Power On System Test (POST),

2. Boot device identification,

3. Loading boot code,

4. Location of the Operating System files,

5. Loading of system files and mounting file systems.

The boot is accomplished in the following manner: firs t a boot floppy is located

and the BOOT ROM code is loaded; next the booting computer broadcasts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 3. A p p a r a tu s 55

requests for an image of the OS files. When such a broadcast is detected by

the cluster server, the server tells the client where it can locate the image of

the kernel. A fte r the kernel image is loaded, the control o f the boot processes

is passed to the kernel. The kernel identifies the hardware configuration of the

machine and recognizes the fact tha t it needs to finish the boot process using

the network. Another broadcast request is sent inquiring about the location of

the system files and remote file systems. A fte r th is inform ation is provided by

the server, the cluster member finishes loading system files, mounts the swap

p a rtitio n on the local hard drive, remote file systems on the server, and the

boot is complete. Any files required by the computer after the boot are loaded

from file systems mounted from the server.

Kernel Configuration

A custom kernel needs to be b u ilt in order to support diskless configuration

of a cluster member. The following options were specified during the kernel

configuration procedure:

• Filesystems:

Second extended fs support

Network F ile Systems:

— NFS filesystem support: ENABLED

— Root file system on NFS: ENABLED

® Network Device Support:

Ethernet (10 or 100Mbit):

— Cluster Member Network Card Type: C O M PILED -IN (not as module)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 3 . A p p a r a t u s 56

Diskless Client

As stated in the previous section, none of the computers participating in the

experiment had a local copy of the operating system. The operating system

was loaded via network and file systems were mounted on the server. The

lis ting below shows a ll file systems mounted by a cluster member:

1. a s u s 2 p 3 :/tftp b o o t/c m 3 on / typ e n fs

(rw ,rs iz e = 8 1 9 2 Jw s iz e = 8 1 9 2 ,tim e o = 1 4 ,in tr)

2. none on /p ro c type p roc (rw)

3. none on /d e v /p ts type devp ts (rw , g id = 5 ,mode=620)

4 . asus2p3: / t f t p b o o t /u s r on /u s r typ e n fs

(rw , rs ize= 8192 ,w s ize=8192 ,tim eo= 14 , i n t r , addr=192.19 3 .1 .2 5 0)

5. asus2p3: /hom e/developm ent on /deve lopm ent typ e n fs

(rw , rs iz e = 8 1 9 2 ,wsize=8192, t imeo 1 4 ,i n t r , addr=192.1 9 3 .1 .2 5 0)

The firs t entry shows tha t the root of computer CM3 is mounted on com

puter named asus2p3 (the server) in the /tftp b o o t/cm 3 directory. The next

two entries apply to v irtu a l file systems tha t are not mounted physically. The

fou rth entry shows a common /usr file system th a t is shared among a ll clus

te r participants. Finally, the fifth entry shows tha t the working d irectory o f

the currently logged user is mounted on asus2p3 in the /home/ development

directory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 3. A p p a r a t u s 57

3.3 Network Connection

The most common type of networking technologies used today is Ethernet.

Ethernet is also the least expensive networking hardware available today.

W hile Ethernet technology does not scale and reaches its peak efficiency at

60% medium u tiliza tion , i t works well on medium sized networks [128]. There

are three types of Ethernet hardware available on the market today. The

firs t and most common type is 10M Bit Ethernet. 10M Bit Ethernet hardware

runs at 10MHz and delivers transfer rates around IM B/sec. The second type,

so called “Fast Ethernet” runs at 100MHz and delivers transfer rates around

lOMB/Sec. The newest type of Ethernet is “G igabit” Ethernet. G igabit E th

ernet runs at 1GHz and delivers transfer rates close to lOOMB/sec. G igabit

hardware is s till very expensive and the distance between nodes cannot be very

large [25, p 132].

The conducted research examined the applicab ility of Ethernet and fast E th

ernet technologies in cluster topology.

3.3 .1 N IC s

Two types of Network Interface Cards (NICs) were used. In itia lly each clus

ter member had a 10M Bit Ethernet card. Later on tests were conducted on

100MBit Ethernet.

3.3 .2 H ubs

The 10M Bit topology was implemented using a 10M Bit hub. The 100MBit

topology was implemented using a 100MBit. The use of a sw itch was consid

ered. An Ethernet switch allows for creation of v irtu a l connections between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 3. A p p a r a t u s 58

two machines exchanging inform ation and th a t conversation is isolated (fil

tered) from the rest of the computers present on the network. The performance

of such a network is greater than tha t o f a hub based network because there

are fewer packet collisions. A hub based implementation does not allow for

creation of isolated v irtu a l circuits. Any broadcasting machine is “heard” by

a ll computers connected; when more than two computers are exchanging infor

mation, packet collisions contribute to overall network performance [86]. The

cluster’s network topology is illustra ted in figure 3.4. We see th a t the server

has only one network connection. A ll inform ation sent to cluster members is

carried through th a t connection. I t would be impossible to create m ultip le

isolated circuits between the server and cluster members. Thus the cluster

would not benefit greatly from the use of a switch.

3 .3 .3 N etw ork T opology

Ethernet based networks are implemented in two fashions. The orig inal coax

based Ethernet was implemented using bus topology. A ll partic ipating com

puters connected to a common bus and broadcast inform ation on the bus.

W hile s till common, the coax based Ethernet is being replaced by tw isted pair

based Ethernet, which is implemented using star topology. In star topology

a ll network participants are connected to a hub or a switch using Category 3

or higher tw isted pair cables. One issue worth noting is the fact th a t the coax

based Ethernet is lim ited to 10MHz, hence it cannot be used w ith 100M Bit or

faster network interface cards. The star topology was chosen to implement the

cluster’s network infrastructure. The bus and star topologies are illustra ted in

figures 3.3 and 3.4 respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 3. A p p a r a t u s

n □ n
IBM Compatible Workstation Mac Classic

G - Ethernet -

 B=SSSOLa
n a i a i a a a a a a a a B i i B i [

3
nmiiHimmiHj

Network Printer
□

Server

Figure 3.3: Bus Topology

Cluster
Server

Cluster
Member MemberMember

Figure 3.4: Star Topology

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 3. A p p a r a t u s 60

3.4 Scalability

I t was im portant to design a cluster tha t could scale, or whose performance

would increase w ith the number of nodes present. W hile Ethernet networks

benefit from switched technologies, the only communications th a t take place in

the cluster are the communications between the server and each cluster mem

ber. In order to create N isolated circuits the server would need N network

cards. The current PC architecture imposes a lim it on how many expansion

slots can be present in a PC. Usually a PC w ill have four expansion slots on

one bus. Some high end servers have two buses, but tha t would s till pu t a

l im it, on the number of network cards present in a system.

In order to avoid th a t physical lim ita tion , it was decided to use one network

card in the server and to observe its scalability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4

Cluster Network

Im plem entation

The previous chapter illustra ted the topology of the implemented cluster. The

follow ing chapter w ill provide the reader w ith additional im plem entation de

tails.

4.1 Network Connectivity

The main idea behind the implemented cluster is to u tilize the ind ividual

computing facilities of machines th a t can be accessed remotely via network.

The network is the only connection tha t exists between the cluster members

and the server.

4.1.1 Client-Server Computing

As stated previously, the computers partic ipating in the cluster are not aware

o f each other. They are not even aware of the cluster server. As far as the

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 4 . C l u s t e r N e t w o r k I m p l e m e n t a t io n 62

cluster member is concerned it only provides computing facilities to anybody

tha t requests them. In the implemented cluster, cluster members are actually

computing servers th a t can perform some computations on the data sent to

them. The results of the computations are sent back to the computer the

computing. Some clarification is needed at th is point. C luster member com

puters are computing servers. The cluster server is a clever client th a t divides

its computing problem evenly among computing servers. The clever client is

capable of d ivid ing and coordinating the activities o f the servers. As far as

the client is concerned, it can send its data to one or more servers and collect

the results. The computing servers do not care where the data comes from.

As long as the client(s) follow a protocol of the server, the server w ill receive

the data and perform computations on them. The follow ing is the protocol

designed for cluster m atrix m ultip lication:

Cluster Member Cluster Server

data originated from (client). This model of computing is called C lient-Server

(Server)

W ait for connection

(Client)

Send M a trix Dimensions

Receive M a trix Dimensions W ait for Confirm ation of M a trix Dimensions

W ait for M a trix 1 Send M a trix 1

Receive M a trix 1 W ait for Confirm ation

W ait for M a trix 2 Send M a trix 2

W ait for Confirm ation

W ait for Results

Send Results Receive Results

Sim ilar protocol was designed for cluster F F T :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 4 . C l u s t e r N e t w o r k I m p l e m e n t a t io n 63

Cluster Member Cluster Server

(Server) (Client)

W ait for connection Send Matrix Dimensions

Receive M a trix Dimensions W ait for Confirm ation of M a trix Dimensions

W ait for M a trix Send M a trix

Receive M a trix 1

W ait for Results

Send Results Receive Results

The client-server architecture is very common. Quite often servers are power

fu l computers perform ing computations on behalf of less powerful clients. I t is

common to see servers serving m ultip le clients simultaneously. In our case we

have several com puting servers utilized simultaneously by one client. Figures

4.1 and 4.2 illus tra te both concepts clearly.

4 .1 .2 OS S upport

One of the desired features of cluster computing is the fact th a t it can be

performed on machines tha t are completely independent. C luster members do

not have to have the same hardware architecture or run the same operating

system. There are a few requirements tha t need to be satisfied.

Network Support

Each machine participating in the cluster needs to be able to communicate

w ith the cluster server. The operating system needs to provide a means for

conducting communications. I t was decided tha t the commonly used T C P /IP

protocol should be used as the lingua franca of the cluster. Any computer run-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 4 . C l u s t e r N e t w o r k I m p l e m e n t a t io n 64

□

□
□

Server \ ^

/ < / V
\

LB
Client Client

Figure 4.1: Typical C lient-Server

ning an operating system tha t provides support for T C P /IP communications

can be used to participate in the cluster.

Binary Compatibility

ANSI C programming language was used to develop the code and socket com

munications were used to pass messages between the cluster participants. GNU

C compiler was used to compile the code for cluster members and the server.

GNU C compiler has been ported to many operating systems. The cluster

member code should run w ithout m odifications on any p latform to which the

GNU C compiler has been ported.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 4 . C l u s t e r N e t w o r k I m p l e m e n t a t io n 65

□ □
■ **IV ,[p ^ r n s

Server \

\ / Server

□
Client \ \

/ \ > \
< # #

\

Server Server

Figure 4.2: Implemented Cluster Client-Server

4.2 Network Services

The previous chapter addressed the network configurations th a t needed to be

performed on the client side. The follow ing sections w ill address the implemen

ta tion details on the server side. The server needs to provide several services

for cluster participants. W hile it is not absolutely necessary th a t a ll o f these

services be implemented, the services listed below allowed seamless client ad

d ition and automated the cluster adm inistration. The follow ing services were

configured:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 4. C l u s t e r N e t w o r k Im p le m e n ta t io n 66

• DHCP and BOOTP: IP management

• TFTP : Network Boot

• NFS: Network File System

The server provides three basic services for the clients. F irs tly and most

im portantly, i t gives them an identity. Secondly, it te lls them where to load

the image of the operating system from and finally, i t provides them w ith a

working file system. Each of the services is explained in the sections below.

4.2 .1 D H C P and B O O T P

The software used to perform network IP management was Internet Software

Consortium DHCP Server, dhcpd. The software implements Dynamic Host

Configuration Protocol (DHCP) and Internet Bootstrap Protocol (BOOTP).

The DHCP protocol allows a host unknown to the network adm inistrator to

be autom atically assigned a new IP address out of a pool of IP addresses for its

network. In order for th is to work, the network adm inistrator allocates address

pools in each subnet and enters them into the dhcpd.conf file. On startup,

dhcpd reads the dhcpd.conf file and stores a lis t of available addresses on each

subnet in memory. When a client requests an address using the DHCP pro

tocol, dhcpd allocates an address for it. Each client is assigned a lease, which

expires after an amount of tim e chosen by the adm inistrator. Before leases

expire, the clients to which leases are assigned are expected to renew them in

order to continue to use the addresses. Once a lease has expired, the client

to which th a t lease was assigned is no longer perm itted to use the leased IP

address [138].

The dhcpd software needs to be configured before i t can serve clients. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 4 . C l u s t e r N e t w o r k I m p l e m e n t a t io n 67

configuration settings for dhcpd are stored in the /e tc/dhcpd.conf file:
subnet 19 2 .1 9 3 .1 .0 netmask 255 .255 .255 .0 {

range 192 .193 .1 .80 192 .193 .1 .90 ;

d e fa u lt - le a s e - t im e 36000;

max-lease-time 72000;

}
group{
filename " / t f tp b o o t /e e p r o k e m e l" ;

server-nam e "asus2 p3";

n e x t-s e rv e r 192 .193 .1 .250 ;

o p t io n dom ain-nam e-servers 129 .100 .2 .12 ;

o p t io n domain-name "uwo.ca";
h o s t cml {

hardware e th e rn e t 0 0 :DO:B7:BD:4 9 :8A;

f ix e d -a d d re s s 192 .19 3 .1 .7 1 ;

o p t io n host-nam e "c m l" ;

}

h o s t cm6 {

hardware e th e rn e t 0 0 :DO:B7:BD:9 0 :4D;

f ix e d -a d d re s s 192 .1 9 3 .1.76;
o p t io n host-nam e "cm 6";

}
}

The firs t part of the configuration file contains a range of IP addresses th a t it

can give out to any client tha t requests them. In tha t section one also specifies

the lease tim e o f the IP addresses given out. Before the lease expires the client

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 4. C l u s t e r N e t w o r k Im p le m e n ta t io n 68

w ill need to renew the IP address it leases or obtain a new one.

The second section specifies global data for a set of hosts. In our case these

data belong to cluster members partic ipating in the experiment (C M 1-C M 6).

The firs t line tells clients where to find an image of the kernel file to be loaded.

The second line tells clients the name of the server. The remaining options in

the global section te ll clients additional inform ation they m ight need.

The th ird section contains inform ation organized in groups for each and every

host partic ipating in the cluster. Each host has a network card w ith a unique

hardware address assigned to i t by the card’s manufacturer. The firs t line in

every group identifies the hardware address o f the cluster participant. The

IP address of the participant is found on the second line. F inally, its name is

listed on the th ird line.

Consider a computer attem pting to boot using network facilities. The com

puter loads the boot code from its BOOT ROM and then it attempts to find

a server th a t contains an image of the OS the client needs to load. The client

broadcasts requests to DHCP servers present on the network. I f a DHCP

server is present on the network, i t w ill answer and offer the client an IP ad

dress together w ith the inform ation specifying the location of the kernel image.

I f the client accepts the offered IP, it sends an acknowledgment to the server

confirm ing the acceptance of the lease.

Demonstration of conversation between the server and the client (CM4):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 4 . C l u s t e r N e t w o r k I m p l e m e n t a t io n 69

[root/@ asus2p3 / r o o t] # dhcpd -d

In te rn e t S o ftw are Consortium DHCP S erver 2 .0

C o p y rig h t 1995, 1996, 1997, 1998, 1999 The In te rn e t S o ftw are

C onsortium .

A l l r ig h t s re se rve d .

P lease c o n tr ib u te i f you f in d t h is so ftw a re u s e fu l .

For in fo , p lease v i s i t h t t p : //w w w . i s c . o rg /d h c p -c o n tr ib .h tm l

L is te n in g on L P F /e th 0 /0 0 :9 0 :2 7 :7 7 :4 1 :8 a /1 9 2 .193 .1 .0

Sending on L P F /e th 0 /0 0 :9 0 :2 7 :7 7 :4 1 :8 a /1 9 2 .1 9 3 .1 .0

Sending on S o c k e t / fa l lb a c k / fa l lb a c k -n e t

DHCPDISCOVER from 0 0 :d 0 :b 7 :b d :9 0 :4 d v ia ethO

DHCPOFFER on 192 .193 .1 .74 to 0 0 :d 0 :b 7 :b d :9 0 :4 d v ia ethO

DHCPREQUEST f o r 192 .193 .1 .74 from 0 0 :d 0 :b 7 :b d :9 0 :4 d v ia ethO

DHCPACK on 192 .193 .1 .74 to 0 0 :d 0 :b 7 :b d :9 0 :4 d v ia ethO

4 .2 .2 T F T P

When the client receives a valid IP address together with the inform ation

where to fin d the kernel image, it needs to load and execute it. The protocol

used to load the kernel is TFTP or T riv ia l File Transfer Protocol. TFTP is

a ligh t version of the F ile Transfer Protocol or FTP. TFTP is not a secure

protocol and it does not provide authentication. TFTP runs on top o f User

Datagram Protocol (UDP) instead of Transmission Control P rotocol (TC P).

UDP was chosen instead of TCP for sim plicity. The implem entation of UDP is

much simpler than th a t o f TCP and the code can fit easily on a BO O T ROM.

Because UDP is a block oriented, as opposed to a stream oriented, protocol,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.isc.org/dhcp-contrib.html

www.manaraa.com

C h a p t e r 4 . C l u s t e r N e t w o r k Im p le m e n ta t io n 70

the transfer is performed block by block. A typical conversation between a

cluster member and the server is illustra ted in the dialogue below:

CM: G ive me b lo c k 1 o f / t f tp b o o t /e e p ro k e rn e l

CS: B lock 1 o f / 1 f tp b o o t / eeprokerne1

CM: G ive me b lo c k 2

The conversation is carried on u n til the entire image of the kernel is transferred.

Handshaking is a simple acknowledgment o f each block scheme, and packet loss

is handled by retransm it on tim eout. When a ll blocks have been received, the

network boot ROM hands control to the operating system image at the entry

point [39].

4 .2 .3 N F S

When the OS kernel boots i t needs to mount a root file system. The cluster

was implemented in such a way tha t each cluster member mounted a root file

system from the server. Thus it always had updated binaries and a ll cluster

member files were up to date. The protocol used to provide root file systems

for cluster members was Network F ile System or NFS. A fte r the kernel is

loaded and the root over NFS option is compiled into the kernel (see section

3.2.2) the booting computer can mount a file system residing on the server.

The server hosts a separate OS image for each cluster member. The server

also allows each cluster member to mount a common directory, which is used

to host binaries of programs run by cluster members. The lis t below contains

a ll server directories th a t can be accessed using NFS [74].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 4 . C l u s t e r N e t w o r k I m p l e m e n t a t io n 71

[damian@asu.s2p3 damian] $ ca t /e tc /e x p o r ts

/home/development * .uwo. ca (rw)

/ t f tp b o o t /c m l * . uwo. ca(rw ,no_root_squash)

/tftpboot/cm2 * .uwo. ca(rw ,no_root_squash)

/tf tpboot/cm3 * .uwo. ca(rw ,no_root_squash)

/ t f tp b o o t /c m 4 * .uwo. c a (rw ,no_root_squash)

/ t f tp b o o t /c m 5 * .uwo. ca(rw ,no_root_squash)

/ t f tp b o o t/c m 6 * .uwo. ca (rw, no _root .squash)

/ t f t p b o o t/usr * . uwo. c a (ro ,n o _ ro o t .squash)

The firs t entry specifies a common directory th a t is accessible freely by any

body. The next four entries are unique to each cluster member participating in

the experiment. They contain root file systems of a particu lar computer (C M 1-

CM6). F inally, the last entry lists a common /usr folder th a t is mounted as

“read only” . The /u sr folder on a Linux system contains system files tha t do

not need to be modified by users.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5

Cluster Applications

Let us consider the following problem. Suppose we want to evaluate the value

of ex using the following formula:

rp rp rp rp
™ . *L> tXj «£/ tJU / _ . \

e = 1 + l ! + a + 3! ' " + d (s 1

Given the values of x (power) and n (desired accuracy) we could evaluate the

value o f ex using the algorithm hsted in figure 5.1. We can easily see th a t the

E=1
For i = l To n

E=E+ x / i !
Next i

Figure 5.1: Exponent evaluation serial algorithm

value of ex is the sum of independently calculated discrete fractions of x and

d. We could easily d istribute the task among remote computers and collect

the ir ind ividual results to produce the value of ex. Figure 5.2 demonstrates

how we can rewrite the serial algorithm in such a way tha t it could be used

to calculate any part of the series. This program could run on any computer

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 73

E=0
For i=Min To Max
E=E+x/i!

Next i
Figure 5.2: Parallel exponent evaluation client

partic ipating in the computations. We would then need some coordinating

computer tha t would schedule those computation on remote computers. A

program run by the coordinator is listed in figure 5.3. The computing task

E=1
For i = l To NumberO fC lients

E [i]= C a lc u la te E (M in (i) , Max(i))
Next i
For i = l To NumberO fC lients

E=E+E[i]
Next i

Figure 5.3: Parallel exponent evaluation server

would be performed in parallel by a ll (N) computers partic ipating in the com

putations. The overall computing tim e would be reduced and, depending on

the nature of the problem, a potential speed-up of N could be achieved.

In order to evaluate the functionality and applicability three engineering ap

plications were developed and run on the cluster. Implementation details w ill

follow in the sections below.

5.1 M atrix M ultip lication

M atrix m ultip lication algorithm is a CPU intensive task, hence a good can

didate for performance evaluation of shared and distributed memory parallel

computers [51].

In section 2.5.2 the product of two matrices was defined as [C] = [A][B] and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 74

the elements o f [C] were defined as:

n

C i,i — 'Y2 A i,kB k ,j

fc=1

where n is the column dimension of [A] and the row dimension of [B]. That is,

the Cij element is obtained by adding the product of ind ividual elements from

the i th row o f the firs t m atrix [A] by the j th column from the second m atrix

[.B] [24, pp 206-207]. The above defin ition states th a t the m ultip lica tion of

two matrices can only be performed if the firs t m atrix has as many columns

as the number o f rows in the second m atrix. Thus, i f [A] is an m x n m atrix

[B] could be an n x I m atrix. The resulting [C] m atrix would have dimension

of m x I.

5.1.1 S eq uentia l A lgorith m

A sequential m atrix m ultip lica tion algorithm was presented in section 2.5.2.

We reproduce it here for reference. The algorithm uses three nested loops tha t

traverse each row o f m a trix [A] and each column of m atrix [B]. The algorithm

is illustra ted in the pseudocode listed in figure 5.4.

For i = l To m
For j = l To 1

For k = l To n
C [i] [j] = C [i] [j] + A [i] [k] x B [k] [j]

Next k
Next j

Next i

Figure 5.4: Sequential m atrix m ultip lica tion algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 75

5.1 .2 P ara lle l A lgorith m

The sequential algorithm described above performs m x I x n independent

m ultip lica tions. The order in which each set of m ultip lications takes place

does not affect the fina l result. The result could be obtained by perform ing

the m ultip lications in parallel by one or more independent processors. Each of

the processors would only need to have access to the particu lar row of m atrix

[A] and to the corresponding column of m atrix [B] as well the location where

the result should be stored. Obviously, th is is not an optim al way to perform

a m atrix-m atrix product in parallel; however, it results in a good illustra tion

of the concept. The data are replicated to a ll partic ipating processors, as it

is quite often the case in many parallel calculations th a t some data items are

needed in a ll processors. Replication of th is data is more efficient than inter

processor communications [71].

Consider two 2 x 2 matrices:

" A n A 12
B =

B n B \2

A 21 A 22 B 21 B 22

The result o f [A] x [B } could be obtained by perform ing computations on two

independent processors:

P rocessor 1 P rocessor 2
□

B n B 12
□ □

B n B 12
A n A n II O £ to A 21 A 22

B 21 B 22 - B 21 B 22

The results of the independent computations can be then combined into one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 76

resulting m atrix:

Cu C 12

C21 C22

This characteristic can be utilized to implement a cluster matrix multiplication

algorithm .

5 .1 .3 C lu ster Im p lem en tation

Consider the follow ing cluster infrastructure. There exist N independent com

puting entities (Cluster Members or CM) capable of perform ing m atrix mul

tip lica tions on a rb itra rily sized matrices [A] and [B].

There exists a supervising computing en tity (Cluster Server or CS) which is

coordinating any computing activities in the cluster. The CS is aware of each

and every CM available for computations. The CS divides the com putational

task evenly among a ll CM ’s. This means tha t data are partitioned and sent

to a ll C M ’s.

Each CM is w aiting for data to compute on; when it receives the data (two

matrices), i t performs the m ultip lica tion o f the two matrices. The results o f

the com putation are sent to the computer where the data originated from

(CS).

The CS receives a ll results and combines them into one logical en tity th a t

could be stored for later analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s

C luster Server Pseudo Code:

Read Matrix [A]njTl

Read M a trix [B)n n̂

For i = 1 To N

Connect to C luster Member i

Send [Ajyjy'jv̂

Send

Disconnect from Cluster Member i

Next i

For i — 1 To N

Connect to C luster Member i

Receive [C \n/ N,n

Disconnect from Cluster Member i

Next i

Store [C]n,n

Cluster Member Pseudo Code:

Do

Listen for Connection from Cluster Server

Connect to C luster Server

Read M a trix [A]mjn

Read M a trix [B)ntn

M u ltip ly [A]m>n[R]ra,n

Connect to Cluster Server

Send Result [C]m,n

Disconnect from Cluster Server

End Do

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 78

To demonstrate the above algorithms we w ill perform a m u ltip lica tion of

two 4 x 4 matrices on a cluster w ith four CM ’s. Consider two matrices:

T ill A 1 2 ^ 13 A u ’ f in B \2 B 1 3 B n

A 2 1 A 2 2 A 2 3 A 2 4
B -

B 2i B 22 B 23 B 24

M31 A 3 2 A 33 A 34 B 3 1 B 3 2 B 3 3 B 3 4

A 4 1 A 4 2 A43 A 44 B 4 1 B 4 2 B 4 3 B 4 4

The CS needs to p a rtition the data and send it to the partic ipating CMs. Each

CM w ill receive one row of [A] and the entire m atrix [B] :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s

CM 1:

CM 2:

CM 3:

CM 4:

A1 = Au U2 A l3 114 B =

Bu B \2 Biz B u

B 21 B 22 B 23 B 24

B 31 B 32 Bzz B u

B 41 B 42 B 43 B 44

A 2 = A 21 2̂2 A 23 124 ,B =

B n B 1 2 B \3 B u

B 2 1 B 2 2 B 2 3 B 2 1

B 3 1 B 3 2 B 3 3 B 3 4

B 4 1 B 4 2 B 4 3 B 4 4

A3 A :31 ^ 3 2 ^133 ^ 3 4

B n B \2 B\3 B u

B 21 B 22 B 23 B 24

B 31 B 32 B 33 B 34

B 41 B 42 B 43 B 44

A4 — A 41 A 42 A 43 A 44 ,B =

B n B \ 2 B 13 B u

B 2 1 B 2 2 B 2 3 B 2 4

B 3 1 B 3 2 B 3 3 B 3 4

B 4 1 B 4 2 B 4 3 B 4 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5 . C l u s t e r A p p l ic a t io n s 80

Each CM w ill then m ultiply the matrices it has received and then send the

results to the CS:

CM 1:

□
C l = C l 1 C i2 C i3 C u

CM 2:

□
C 2 — C21 C22 C23 C24

CM 3:

□
C3 — C31 C32 C33 C34

CM 4:

(74 — C41 C42 C43 C44

The CS w ill assemble the ind ividual results into one matrix:

(C l
□

\ r

C2
□

(73
□

I C 4 . / -

C u C 12 c 13 C u

C 21 C 22 C 23 C 24

C 31 C 32 C 33 C 34

C 41 C 42 C 43 C 44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 81

5 .1 .4 C onclu d in g R em arks

The algorithm has been implemented in the C programming language (see

the listings in the Appendix). The correctness o f its operation was tested by

running several m ultip lications of a randomly generated m a trix by an iden tity

m atrix. We know th a t the result o f any m atrix m ultip lied by an iden tity ma

tr ix is the original m atrix [67, Page 713]:

[A][I] = [A]

Where [A] is any m atrix and [J] is a square m atrix, a ll of whose elements are

0 except for the diagonal elements which are 1:

A ,4 —

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

The results of the m ultip lica tion were then compared to the orig inal random

m atrix. The d istributed m atrix m u ltip lica tion worked correctly in a ll cases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s

5.2 2DFFT

82

We stated in section 2.5.2 tha t the 2-dimensional fin ite Fourier transform can

be w ritten as a two dimensional tensor product whose factors are 1-dimensional

fin ite Fourier transforms. Let [A] be an L x M 2-dimensional complex m atrix.

The L x M 2-dimensional transform of [A] denoted by T{A jĵm) is the L x M

2-dim ensional array [B] defined by:

M —1 L —l

Br,s A lime2^ Le2̂ M
m—0 1=0

W hich can be w ritten in a compact m atrix notation:

\B] = F{L)\A)F(M)

This method is called row-column because it computes [B] by a sequence of 1-

dimensional fin ite Fourier transforms of the rows of [A] followed by a sequence

of 1-dimensional fin ite Fourier transforms of the resulting columns. The ma

tr ix [B] is computed in two stages. F irst an intermediate m a trix of Fourier

transforms of the rows is computed, then a second series of Fourier transforms

of the columns is performed on the resulting m atrix.

r F I : F 2 :

A n A i 2

^ A 21 A 22

A n A 12 • ‘ A in F I A n A \2 • Ain

A 21 A 22 ' • A 2n F n A 21 A %2 ’ ’ A 2n

Anl A n 2 ■ . A F n Anl An2 ■ • A
A.n l

F N :

A-ln

A 2 n

4̂-rm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 83

5.2 .1 S eq u en tia l A lgorith m

2-dimensional FFT is quite often implemented using a brute force sequential

method. The target m atrix is handled on row by row and column by column

basis. The algorithm uses two simple loops tha t traverse every row and every

column of the m atrix. Such an implementation is illustra ted in the pseudocode

below:
Read M a trix [A]n>m

For % — 1 To n

FFT{Ai,m)
Next i

For i = 1 To m

F F T (A n>i)

Next i

Store [A]re,m

5.2 .2 P ara lle l A lgorith m

This algorithm is very simple and works very well on a single processor. In

order to implement th is algorithm in a parallel manner several issues need

to be addressed. Computers store data in memory in a sequential manner.

M ultidim ensional data structures such as arrays are always mapped onto a

continuous set o f memory locations. For example, a 4 x 4 array w ill be stored

in sixteen consecutive memory locations. I f we assume th a t each array ele

ment requires one byte of storage and tha t the firs t array element is stored

at memory location M , then the firs t element of the second row is stored at

M + 4. The firs t element of the th ird row is stored at M + 8 and the firs t

element o f the fourth row is stored at M + 12. The follow ing form ula is used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 84

to translate high level transcript notation of the element a[i][j] or m atrix A XtV:

a[i}[j] — Mem Location(a^r” T” x (x x j) + j

where a[i]\j] is the value we want to access and a[0][0] is the memory location

o f the firs t element of the A XXy m atrix. This of course presents a problem when

a set columns is sent to a remote machine w ith its own local memory. The set

o f columns would be mapped into a set of rows resulting in computations on

the wrong data.

In order to avoid this problem the follow ing solution is proposed. The data

resulting from row FFT computations would be “rotated” in such a way tha t

columns would become rows and vice versa:

A n A n '

1
e

I

y-* to t—1 A n

A 21

...
to to • A^n

rotate =$■
A n 2 ' • A 22 A 12

A nl A n 2 ’ ■ A A A 2n A in

When data are rotated we can use the same algorithm to perform the FF T on

both rows and columns w ithout compromising the in tegrity of the data.

We recognize tha t the final result depends on the F F T ’s performed on a ll rows

or columns o f the m atrix; however, F F T ’s of each row or column can be per

formed independently from each other. This observation leads us to believe

th a t we could perform F F T ’s on d istinct rows or columns simultaneously, in

dependently from each other. Consider a 2-dimensional Fourier transform of

a 2 x 2 m atrix [A]:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 85

m * x 2) = F ...
...

..1

H-1 A 12
\

\ A 21 1
CSCS)

Suppose we could use two independent processors to perform the transform

Jr(A 2x2)- F irst we could use each processor to perform 1-dimensional Fourier

transform on one d istinct row of the m atrix [A]:

Processor 1

F ^ A n A 12

Processor 2
□

F \ Aoi Ai-22

Before computing FFT on the columns o f [A] we need to collect the results

and combine them into an intermediate m atrix [A']. The intermediate result

m a trix [A!] has to be then rotated in such a way tha t the columns become rows:

Rotate
/

' A!n A '12 A' A 'a 2\

\ _ ^ 2 1 A '/1 22) A '
_ ^ 1 2 1

CS
 ̂

CS

Then we could use each processor to perform 1-dimensional Fourier transform

on one d istinct row of the m atrix [A ']:

Processor 1

T A ' A 'A n A 2i

Processor 2

F (A '12 A 22

We again collect the results and combine them into one m atrix [A "] . We could

then leave the results in tha t form or rotate the result m atrix [A"] back to the

orig inal form:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 86

Rotate
A" A "/ i n / i 2 1

A" A " 12 22

A"

A" ^21

A"12

A"

The resulting m a trix [A"] would then contain the result of a 2-dimensional

Fourier transform of [A],

5 .2 .3 C lu ster Im p lem en ta tion

Consider the follow ing cluster infrastructure. There exist N independent com

puting entities (Cluster Members or CM) capable of perform ing 1-dimensional

fast Fourier transform (FFT) on a rb itra rily sized m atrix [A] whose dimensions

are a power of 2.

There exists a supervising computing entity (Cluster Server or CS) which is

coordinating any computing activities in the cluster. The CS is aware of each

and every CM available for computations. The CS divides the com putational

task evenly among a ll C M ’s. This means tha t data are partitioned and sent

to a ll CM ’s.

Each CM is w aiting for data to compute on; when it receives the data (set

of rows) it performs an FFT on every row of the m atrix. The results of the

computation are sent to the computer where the data originated from (CS).

The CS receives a ll results, combines them into one logical entity, and reor

ganizes the results in such a way tha t another series o f 1-dimensional F F T ’s

could be performed. The reorganized m atrix is partitioned and each p a rtition

(set of rows) is sent to a ll CM ’s for computations.

The results are again combined into one logical entity and stored for later

analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s

Cluster Server Pseudo Code:

Read M a tr ix [A]

For i = l To N

Connect to C lu s te r M ember[i]

Send [A]_ {n /N ,m }

D isconnect from C lu s te r M em ber[i]

Next i

For i = l To N

Connect to C lu s te r M em berti]

Receive [A ’ l.-C n/N .m }

D isconnect from C lu s te r M em ber[i]

Next i

R o ta te [A 5] _ { n sm}

For i = l To N

Connect to C lu s te r M em ber[i]

Send [A ’]_ {n /N ,m }

D isconnect from C lu s te r M em ber[i]

Next i

For i = l To N

Connect to C lu s te r M em ber[i]

Receive [A }J]_ {n /N ,m }

D isconnect from C lu s te r M ember[i]

Next i

S to re [A ’ ;]_ {n ,m >

Cluster Member Pseudo Code:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 88

Do
Listen f o r C onnection from C lu s te r S erver

Connect to C lu s te r Server

Read Matrix [A]_{n,m>
For i=l To n

FFT ([A] _{i,m»
Next i

Connect to C lu s te r Server

Send R e su lt [A ,]_{n ,m >

D isconnect from C lu s te r S erver

End Do

To demonstrate the above algorithms we w ill perform a 2-dimensional FFT

on one 4 x 4 data m atrix using a cluster w ith four CM ’s. Consider the m a trix

[A] ix4-

Mi 4.12 4 i3 4 i4

4̂.21 4 22 4 23 4 24

-4.31 4 s2 4 s3 434

4-41 442 443 444

The CS needs to p a rtition the data and send them to the partic ipating C M ’s.

Each CM w ill receive one row of [A]:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 89

CM 1:

CM 2:

CM 3:

CM 4:

A l — A ll -A-12 Ai3 Ai4

A2 — A 21 A 22 A 23 A 24

A3 — A 31 A 32 A 33 A 34

A4 — A41 A 42 A 43 A44

Each CM w ill then perform FFTs on the rows it has received and send the

results to the CS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l i c a t io n s 90

CM 1:

□
F (A l) = M l'n A1 '12 A1'13 A T 14

CM 2:

□
T { A 2) = A2 '21 A2 '22 A223 A2'24

CM 3:

□
JF (A 3) = A3'S1 A3!j2 A3'33 A3^4

CM 4:

□
F(AA) — A441 A442 A443 A444

The CS w ill assemble the ind ividual results into one m atrix:

(A l '
□

\

A 2I
□

A3'
□

^ A 4 ' /

A 1 to A 113 A '14

A 121 A ’^ 2 2 A '23 A 'A 24

A 1^ 3 1 A '32 A '33 A '34

A 1 to CO A '44

The CS w ill then rotate the resulting m atrix, so tha t a series of 1-dimensional

F F T ’s can be performed on the columns of [A']:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 91

Rotate

/ ' A C A'
1 2

A'■^13

1.........

\ A'/ i n A'
2 1

A'^ 3 1

»

^ 2 1
A'

^ 2 2
A' A' A'

1 2
A'

2 2
A'•/1 32 A'42

A' A'/ i 32 A'^ 3 3 A'^ 3 4
A ’

13 A'23 A' CO
** Tf»

V A'_ '‘ M l A'42 A!43 A'^ 4 4 A'
_ a 14

A'/ i 2 4 A'^ 3 4

-----1

The resulting m atrix [A '] w ill then again be partitioned and its rows sent to

participating CM ’s:

CM 1:

CM 2:

CM 3:

CM 4:

A l' = A'n AC AC A '21 Ml M l

A2' = AC AC AC A'd42

A3' A' A'
A n 23 A' A‘/ i 3 3 / i .•43

A A' = A> At A> At
A U 24 ^ 3 4 A U

Each CM w ill then perform an FFT on the rows it has received and then

send the results to the CS:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s

CM 1:

CM 2:

CM 3:

CM 4:

F (A 1 ')= A'U AU A'U A'U

J%42') = A'U A'U A'U Aa

H A 3 ')= A’U A i, A'U

•F(44') = AU AU A'U Am

The CS w ill assemble the individual results into one m atrix:

□
c

\

A2"
□

A3"
□

, A4"
\)

A"
^ 1 1

A"A 2 l A" A1

A "
/ 1 1 2

A"A 22 A"J i 32 A 1

A"
^ 1 3 A"^ 2 3

A "
33 A1

A"14 A”24 A"2U3 4 A41,

1/
■41

H
42

u
43

n
■44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 93

5.2.4 C oncluding R em arks

The algorithm has been implemented in the C programming language (see

the listings in the Appendix). The correctness of its operation was tested by

running a series of 2-dimensional F F T ’s on several matrices whose dimensions

were a power of two. The matrices contained the data of a 2-dimensional pulse

function. I t is known tha t the values of a ll elements of a 1-dimensional FF T

o f a pulse function are close to zero, except for the value of the firs t element,

which is close to the sum of a ll elements of the original data m atrix:

u
[A]1x4= 1 1 1 1

□

I f we then perform a series of 1-dimensional F F T ’s on the rows of a square

m a trix [A] we w ill obtain a m atrix whose entries are a ll 0 except for the entries

in the firs t column:

1 1 1 1 4 0 0 0

1 1 1 1
= > Frvws{[A\) =

4 0 0 0

1 1 1 1 4 0 0 0

1 1 1 1 d 4 0 0 0

Performing a series of 1-dimensional F F T ’s on the columns o f the m a trix

w ill result in a m atrix whose elements are a ll 0 except for the value o f A lti

which w ill again be the sum of a ll elements of the firs t column:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 94

4 0 0 0 16 0 0 0

4 0 0 0
" PyAumns ([A]) —

0 0 0 0

4 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

We could use th is property of the Fourier transform to test the correctness

of the computed results. A fter each com putation of the 2-dimensional FFT of

a square pulse function we test i f the value of the firs t element is equal or very

close to the product o f the m a trix ’s dimension. The values of the rest of the

elements should be close to 0.

The d istribu ted 2-dimensional FF T worked correctly during a ll tests con

ducted.

5.3 Electric Field Approximation

Section 2.5.2 illustra ted the algorithm for electric fie ld approximation tha t can

be performed on a d ig ita l computer.

Let [A] be an n x m 2-dimensional m atrix representing a plate on which we

want to calculate the electric field. The potential values to which the plate

is subjected are stored in the firs t (top), last (bottom) rows and firs t (le ft)

and last (righ t) columns. The in itia l values of the grid m atrix are set to the

average value of the potentials the plate is exposed to:

A __ Ptop T Pbottom T Pie f t T Pright (p. ^
A i,j ~ a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 95

A fte r the m atrix has been in itia lized one can proceed and calculate the grid

values using the algorithm presented in section 2.5.2:

A- ■ = Ai+1J + + + A j- 1 3̂

5.3 .1 S eq uentia l A lgorith m

Mesh calculation algorithm is frequently implemented in a sequential manner

using three nested loops. The target m atrix is handled on an element by el

ement basis. The outer loop of the algorithm is used to perform a number

of iterations required for satisfactory convergence of the values of the grid

elements. The two inner loops traverse every row and every column of the

m atrix and allow for the calculation the values of the grid elements. Such an

implementation is illustra ted in the pseudocode below:

I n i t i a l i z e M a tr ix [A]

For i=l To Maxlterations
For y = l To n-1

For x = l To m-1

A_{x,y }= (A _ {x + l,y}+A_{x-l,y}+A_{x,y+l}+A_{x, y - l }) / 4

Next x

Next y
Next i

S to re [A]_ {n ,m }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 96

5.3.2 Parallel Algorithm

The sequential a lgorithm illustra ted in section 5.3.1 works very well on a single

processor (N U M A) computer; however, in order to implement th is algorithm

in a parallel manner several issues need to be addressed. D istributed imple

mentation o f th is algorithm requires partition ing of the grid and assigning the

partitions to every computer participating in the computation. This pa rtition

ing and assignment of the data is usually done by one machine, which is aware

of a ll the machines partic ipating in the computations.

Suppose we could use two independent processors to perform the mesh calcu

lations on a n x n m atrix A. F irst we would divide the data evenly and then we

would allocate the data to both processors to perform the mesh calculations:

Processor 1 Processor 2

A l,! ‘ ’ ’ A i,re An/2+1,1 ' ‘ ' An/2+1,n

An/2,1 ' ‘ ' An/2,n Ara,l • ' ' An,n

Then we could use each processor to perform one ite ra tion of the mesh calcu

la tion on the data i t has access to:

Processor 1 Processor 2
For every element calculate: For every element calculate:

 A j + i j + A i - x j + A i , j + i + A j j - i a____ A j+ 1, + A j _ i ,,- + A,,,■+1 + A,,7-_ i
,3 ~~ 4 ~ ' 4

We would need to repeat the calculations several times in order to obtain a

satisfactory convergence of the grid values. We then collect and combine the

results into the result m atrix A 1.

The problem w ith the algorithm is tha t the mesh values at the boundaries

(rows n/2 and n /2+ 1) w ill not be calculated as there are no data required to

calculate them. Since the data reside on machines physically d is tinct from each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5 . C l u s t e r A p p l ic a t io n s 97

other, additional communications are required in order to ensure the correct

grid values at the pa rtition boundaries. The communications can either take

place among the participating machines or they can be performed between the

participants and the machine acting as a server. A d istributed algorithm tha t

produces correct grid values of the m atrix and the boundaries is listed below:

Processor 1
For every element calculate:
A _ A t+ ij+A i-i.j+A i.j+ i+A j,,--!

~~ 4

SendRows(Ai, A 2, A nj 2- i , A ni 2)

ReceiveRows(Ai, A 2, A n/2_ i, A n/2)

Processor 2
For every element calculate:
A A j+ u + A i- i ' i+ A i j+ i+ A j ' i - i

~ 4

SendRows(An/2, A „ /2+i, A re_ i, A n)

ReceiveRows(Ari/ 2, A n j2+ l, A n„ 1, A n)

In order to sim plify the cluster member algorithms and m inim ize the delays

caused by the computations of the grid values at the boundaries, the server-

participant type o f communications has been implemented. The partic ipant’s

communications algorithm has been simplified, as it is the server th a t assigns

and coordinates the data flow to and from the participants. The server is also

aware o f the boundaries resulting from the partition ing o f data. Communica

tions can be performed either in a synchronous or an asynchronous manner.

Since a ll the participants had the same CPU and the number of data points

required to compute the grid values at the boundaries is only 4N per par

tic ipant, a synchronous type of communication was chosen and implemented.

Each processor sends the two top (A x, A 2) and bottom (A „_ x, A n) rows to the

computer th a t assigned the data to them. That computer performs the cal

culations of the grid values at the boundaries. The computed grid values are

sent back to the computers they originated from.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 98

5 .3 .3 C lu ster Im p lem en tation

Consider the follow ing cluster infrastructure. There exist N independent com

puting entities (Cluster Members or CM) capable of perform ing grid values

approximations on an a rb itra rily sized m atrix [A].

There exists a supervising computing entity (Cluster Server or CS) which is

coordinating any computing activities in the cluster. The CS is aware o f each

and every CM available for computations. The CS divides the computational

task evenly among a ll CM ’s. This means th a t the data are partitioned and

sent to a ll C M ’s.

Each CM is w aiting for data to compute on; when it receives the data (set

of rows) it computes the values the grid elements. A fte r the computations

are complete CM sends the values o f the boundary rows {1 and n or top and

bottom) together w ith the values of the neighbouring rows (2 and n-1) to the

cluster server for ‘mending’ . The mended rows are used in the next round

o f computations. The computations are repeated a predetermined number of

times specified by the CS. Finally, the results o f the com putation are sent to

the computer where the data originated from (CS).

The CS receives a ll results and combines them into one logical entity repre

senting the electric field values on the given plate.

Cluster Server Pseudo Code:

Read M a tr ix [A]

Fo r i = l To N

Connect to C lu s te r Member[i]
Send [A]_ {n /N ,m}

D isconnect from C lu s te r M em ber[i]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s

Next i

For i = l To N u m O fIte ra tions

Connect to C lu s te r M em ber[i]

R eceive [B]_ {n /4 ,m }

D isconnect from C lu s te r Member [i]

Mend [B]

Connect to C lu s te r M em ber[i]

Send [B]_ {n /4 ,m >

D isconnect from C lu s te r M em ber[i]

Next i

For i = l To N

Connect to C lu s te r M em ber[i]

Receive [A]_ {n /N ,m }

D isconnect from C lu s te r M em ber[i]

Next i

S to re [A]_ {n ,m }

Cluster Member Pseudo Code:

Do

L is te n f o r C onnection from C lu s te r S erver

Connect to C lu s te r S erver

Read M a tr ix [A]_ {n ,m }

For i = l To N u m be rO fIte ra tions

C a lc u la te G rid (A)

Connect to C lu s te r S erver

Send [A]_ {n /4 ,m >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5 . C l u s t e r A p p l ic a t io n s 100

Disconnect from C lu s te r S erver

Connect to C lu s te r S erver

Receive [A]_ {n /4 ,m }

D isconnect from C lu s te r S erver

Next i

Connect to C lu s te r S erver

Send R e su lts [A]_{n,m}
D isconnect from C lu s te r S erver

End Do

To demonstrate the above algorithms we w ill calculate the potentia l values of

a 16 x 16 grid m atrix using a cluster w ith two CM ’s. Consider the m atrix

[A] 16x16-

A i,i A 1|2

A-2,1 A.2,2

A i6,l A ib,2

- A^is A 1,16

■ A.2,15 A 2i16

■ A i5)i6 A ie j6

The CS needs to p a rtition the data and send them to the partic ipating CM ’s.

Each CM w ill receive eight rows o f [A]:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 101

CM 1:

CM 2:

A l =

4;L(1 A i t2

A2,l 42,2

As,,i A%£

Ai,i5 A iti e

A2,15 4 2,i6

4 s , 15 4 g , 16

4 2 =

4g,i 4g,2

4io,l -̂10,2

• -4-9,15 -4-9,16

■ 4 io ,15 4 x0,16

4 i6,i 4 16,2 1-15,16 4 i 6, i6

Each CM w ill then perform one ite ra tio n o f the calculations on the rows it

has received:
CM 1:

ComputeGridV alues(A l)

A i i

*■21

*-71

U2

4'022

A'l\n72

481 4 s2

4 l l 5 4 h 6

4 '215 4.216

4 7i5 4816

4815 A 816

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 102

CM 2:

ComputeGridValues(A2) =

^9,1 ^9,2

A i o . i ^ 1 0 ,2

Ai5,l -4 -15,2

4x6,1 4 16i2

4,9,15 A 9,16

10,15 ^10,16

4 -15,15 4 i 5j i 6

4 l 5 16 4 i 6 16

A fte r every ite ra tio n the C M ’s w ill send the boundary rows containing the in

term ediate results o f the calculations to the CS fo r adjustm ent:
CS:

M endBoundaries(T empA)

4 7 1 A’72 A'^*■715 4816

4 8 1 4 ^ 2 . ■ 4 ' 15 4816

4g,i 4-9,2 • • 4 g > 1 5 4g,ie

4 io ,i A'^ 1 0 , 2 ■ A'■ 10,15 4 io ,16

The corrected boundaries are then sent to the C M ’s for the next round o f com

putations. The operation is repeated N tim es (num ber o f ite ra ta tio n or u n til

a satisfactory convergence of the results is ob ta ined). A fte r a ll ite ra tions are

com pleted the CS w ill assemble the in d iv id u a l results in to one m a trix :

AY'

AT'

\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 103

5.3.4 Concluding Remarks

The algorithm has been implemented in the C programming language (see the

listings in the Appendix). The correctness of its operation was tested by run

ning a series calculations of potential d is tribu tion on a plate by one computer

and by m ultip le computers and then comparing the results.

The d istributed version o f the algorithm worked correctly during a ll tests con

ducted. A sample output of the computed results by the cluster is p lotted in

figure 5.5.

P o t e n t i a l

100

Figure 5.5: Mesh calculations

5.4 M ultitreaded Server Applications

The Cluster Server coordinates a ll computations in the designed cluster. The

server is the only computer aware of a ll cluster members and thus capable of

u tiliz in g the ir resources. During the design particular care was paid to the

development of an environment th a t would not be restricted to a specific con

figuration. The d istribu tion of work is determined at the run tim e. The server,

depending on the number of partic ipating cluster members, creates a working

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 104

thread for each cluster member participating in the computation. The thread

is given a fraction o f the data to be computed on and then independently

conducts communications w ith the assigned cluster member. The number of

working threads is restricted only by the memory constrains of the server.

When a ll cluster members finish the computations, the ir results are collected

and the performance of the cluster is stored in a database for fu ture analysis.

No fau lt tolerance has been implemented in the development system. The

server, however, is capable o f recognizing the fact th a t a cluster member is

not responding. Upon discovery of a problem the server notifies the operator

about the cluster member causing a problem.

5 .4 .1 M atrix M u ltip lica tio n

In section 5.1.3 a pseudocode for the cluster server was described. A c la rifi

cation is needed at th is point. W ithout the use of threading techniques the

parallel algorithm performance would be impaired if it were performed by the

server in a sequential manner as listed below.

Cluster Server Sequential P seu d o Code

The two loops responsible for sending and receiving data are sequential by

the ir nature. The algorithm should be implemented in a more efficient man

ner:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5 . C l u s t e r A p p l ic a t io n s 105

For i = l To N
Connect to C lu s te r M em ber[i]
Send [A]{n /N ,n }
Send [B]{n ,n >
D isconnect from C lu s te r M em ber[i]

Next i
For i = l To N

Connect to C lu s te r M em ber[i]
Receive [C]{n /N ,n }
D isconnect from C lu s te r M em ber[i]

Next i

Figure 5.6: Sequential Server Code

Cluster Server Multithreaded Pseudo Code:

For i = 1 To N

Create Thread i Responsible for Communicating

w ith Cluster Member i

Next i

For i = 1 To N

W ait for Thread % to Finish

Next i

T his algorithm w ill attem pt to communicate w ith a ll partic ipating cluster

members simultaneously and the throughput of the server w ill increase.

5.4.2 2D -F F T

The 2-D FF T parallel algorithm listed in section 5.2.2 suffers from the same

problem as the m a trix m ultip lica tion algorithm described in the previous sec

tion. A m ultithreaded version was developed in order to enhance the perfor

mance of the server.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 5. C l u s t e r A p p l ic a t io n s 106

5 .4 .3 Shared M em ory A ccess

The use of threaded techniques improves the throughput of the server. How

ever, communication w ith m ultiple clients simultaneously complicates memory

management, as simultaneous accesses to shared variables can take place. We

know th a t on a shared memory computer each CPU can access any memory

location. I t is possible tha t the running threads m ight attem pt to update the

shared memory areas simultaneously. The usage o f locks was considered for

synchronizing access to the shared memory. Such a protection is always ex

pensive [91]. I t can be seen from the server program lis ting tha t each thread

works only the memory area it was assigned to work on. Any updates in tha t

area would only be performed by one thread at a tim e; hence it is safe to allow

the threads access to the shared memory at any time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6

Experim ental D ata and R esults

The prim ary objective of the conducted experiments was to determine the

cluster’s functionality and applicability. Several synthetic and practical appli

cations have been developed and used to obtain the cluster’s characteristics.

Synthetic applications were used to obtain the cluster’s I/O characteristics and

dependencies. In particular the system latency and the I/O throughput were

determined. Practical applications were used to obtain the raw performance

(wall tim e clock SpeedUp) of the system. The follow ing sections demonstrate

sample results of a ll conducted experiments

6.1 System Latency

System latency has been defined in section 2.1.1 as the amount o f tim e required

for the system to setup computations. The implemented cluster is intercon

nected using an Ethernet network, hence its latency is strongly dependent

on (related to) the latency of the interconnecting medium. The latency of

the system was determined experimentally by recording the data transfer val-

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 6 . E x p e r im e n t a l D a t a a n d R e s u l t s 108

T rec TransferT total
1200

- - 1000

- 800

- 600 r
T total = 3 + 1.79E-03X

400

T ree = 2.1 + 1.78E-03x
- 200

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Data Size [Byte]

Figure 6.1: Machine latency on 10MBit network

Network
Latency
[ms]

10 M b it 4
100 M b it 3

Table 6.1: Network latency

ues of various batches of data. The data were sent from the cluster server

to a cluster member. The amount of data was increased u n til the transfer

rate reached its maximum for the given Ethernet technology; 0.97[M B/s] and

8[M B/s] for 10M Bit and 100MBit Ethernet networks, respectively. The slope

of the curve was approximated and the results were interpolated to determine

network latency (figures 6.1 and 6.2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 6 . E x p e r im e n t a l D a t a a n d R e s u l t s 109

T total T rec - Transfer
7000

- 6000

5000

-- 4000

-- 3000

- 2000

T total = 1 .4+ 1.99E-04x ~ 1000

T rec = 0 .4 7 + 2.12E-04x

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Data Size [Byte]

Figure 6.2: Machine latency on 100MBit network

6.2 D ata Transfer

The computers partic ipating in the experiment are fu lly independent machines

interconnected via an Ethernet network. I t is obvious th a t the performance

of the cluster w ill depend on its network performance and data transfer capa

b ilities. Applications tha t process a lo t of data w ill be subject to the network

performance of the cluster. Applications tha t perform a lo t of processing lo

cally w ill be subject to the CPU performances o f the cluster participants.

The data required for cluster based computations can be transferred in either

raw or marshaled form at. Raw form at is simpler to implement; however, the

Marshalled form at is safer and works regardless of the hardware architecture

of cluster participants.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 6. E x p e r im e n t a l D a t a a n d R e s u l t s 110

6.2 .1 R aw D a ta Transfer

Raw form at implementation does not translate the data in transfer in to a

form at th a t is hardware architecture independent. The receiver w ill receive

and interpret the received data the same way the sender sends, it provided

both the receiver and the sender run on the same hardware architecture (1x86

to 1x86, SUN to SUN, etc.)

This method is re lative ly safe, provided the designer uses only one type of

hardware, or i f the hardware architecture implementation is the same on a ll

machines partic ipating in the cluster.

6 .2 .2 M arshalled D a ta Transfer

In order to ensure tha t the data in transfer w ill always be interpreted correctly,

regardless of the hardware architecture of the sender and receiver, one would

need to convert the data to be transferred to a common network format. The

sender converts the data from its hardware form at to the network form at. The

data then are sent to the receiver which in tu rn w ill convert the data from

the network form at to its native architecture form at. Each transfer requires

additional processing of both the sender and the receiver.

6 .2 .3 C lu ster D a ta Transfers

The star infrastructure tha t was used to implement the cluster is subject to

Ethernet technology performance. The Ethernet technology does not handle

simultaneous accesses linearly; however, for the six cluster member configura

tion , its performance does not degrade drastically.

Several experiments were conducted in order to determine if the network u ti

liza tion had any impact on overall performance of the cluster.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 6. E x p e r im e n t a l D a t a a n d R e s u l t s 111

2500

2000

1CM
~ 1500

4CM
500

Data Transferred [MB]

Figure 6.3: Transfer Rate on 10M Bit Network

Figures 6.3 and 6.4 show execution times and effective transfer rates of four

cluster configurations connected via a 10MHz and 100MHz Ethernet network.

6.3 M atrix M ultiplication

The d istributed m atrix m ultip lica tion program described in section 5.1 has

been run on the cluster and the execution times for various problem sizes have

been recorded. The SpeedUp of the cluster has been calculated and the results

are shown in figures 6.5 and 6.6.

6.4 2D FFT

A popular engineering application, namely the 2D-FFT was chosen for the

second performance evaluator of the cluster. The algorithm used for computing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 6 . E x p e r im e n t a l D a t a a n d R e s u l t s 112

40000

30000

•0— 1CM

—— 2CM

-&—3CM

•X -4C M

$ 2000)

£ 10000

0.1 0.7 3.7 6.2 9.2

Data Transferred [MB]

Figure 6.4: Transfer Rate on 100MBit Network

6

5

4

5
1 36 CO

2

1

0
100x100 300x300 500x500 700x700 900x900

Matrix Size

Figure 6.5: M a trix m u ltip lica tion speedup on 10M Bit network

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 6 . E x p e r im e n t a l D a t a a n d R e s u l t s 113

7

6

5

1in' ^

2

1

0
100x100 300x300 500x500 700x700 900x900

Matrix Size

Figure 6.6: M a trix m ultip lica tion speedup on 100M Bit network

the 2D-FFT in a d istributed manner was described in section 5.2. The program

was on the cluster and the execution times for various problem sizes were

recorded. The SpeedUp of the cluster was calculated and the results are shown

in figures 6.7 and 6.9.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 6 . E x p e r im e n t a l D a t a a n d R e s u l t s

2.5

0.5 -

128x128 256x256 512x512 1024x1024 2048x2048 4096x4096

Data Set

Figure 6.7: 2D-FFT speedup on 10M Bit network

7

6

5

2

1

0
128x128 256x256 512x512 1024x1024 2048x2048 4096x4096

Data Set

—#— 6CM

—A— 5CM

- E -4 C M

— 3CM

—• — 2CM

Figure 6 .8: 2D-FFT SpeedUp on 100MBit network

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 6 . E x p e r im e n t a l D a t a a n d R e s u l t s

— — 6CM

— 5CM

—i f — 4CM

—x — 3CM

—• — 2CM

a,

128x128 256x256 512x512 1024x1024 2048x2048 4096x4096

Data Set

Figure 6.9: Large memory 2D-FFT SpeedUp on 100MBit network

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 6 . E x p e r im e n t a l D a t a a n d R e s u l t s 116

6.5 Mesh Calculations

The th ird engineering application run on the cluster computed the grid values

of a 2-dimensional mesh. The algorithm used for computing the values of

the grid in a d istributed manner was described in section 5.3. The program

was run on the cluster and the execution times for various problem sizes were

recorded. The SpeedUp of the cluster was calculated and the results are shown

in figures 6.10 and 6.11.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 6 . E x p e r im e n t a l D a t a a n d R e s u l t s 117

. .v fS t «i • «

— 6CM

—A— 5CM

—* — 4CM

—X— 3CM

—«— 2CM

J C W tr-* '* * * • • • • « •

0

100x100 1000x1000 1900x1900 2800 x 2800
Data Set

Figure 6.10: Mesh calculations SpeedUp on 10M Bit network

Cu

0)o.tw

6

5

4

3

2

1

0
100x100 1000x1000 1900x1900

Data Set
2800 x 2800

Figure 6.11: Mesh calculations SpeedUp on 100M Bit network

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 7

D iscussion

Several analyses of the collected data were performed. These analyses are

presented in the sections to follow.

7.1 Performance and Scalability

Prom section 6 we see tha t the cluster SpeedUp stops oscillating when the

size o f the data set becomes large enough (over 50% o f the tim e is spent

on computations, as opposed to I/O operations. In order to determine the

maximum possible SpeedUp of the system, the execution times of the cluster

configurations for the largest data sets were analyzed.

7.1.1 D istributed M atrix M ultiplication

The SpeedUp of d istributed m atrix m ultip lica tion for the largest data set is

shown in figure 7.1. The SpeedUp for both 10M bit and 100Mbit configurations

is a linear function of the number of cluster members.

The SpeedUp of the 10Mbit configuration can be regressed as a linear function

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7. D is c u s s io n 119

6

5

SpeedUp 100 = 0.9594n
4

R = 0.9999
SpeedUp 10 = 0.8314n

3
= 0.9962

2

1

0
3 4 5 61 2

-* — 100MBit

HB— 10MBit

Computers

Figure 7.1: Large data m a trix m ultip lica tion SpeedUp

as follows:

SU{n) = 0.8314n (7.1)

Sim ilarly, the SpeedUp of the 100Mbit configuration can be regressed ac

cording to the follow ing expression:

SU(n) = 0.9594n (7.2)

7 .1 .2 D istr ib u ted 2D F F T

The SpeedUp of distributed calculation of 2DFFT for the largest data set is

shown in figure 7.2. The SpeedUp for both 10M bit and 100Mbit configurations

is a logarithm ic function of the number of cluster members.

The SpeedUp of the 10Mbit configuration can be regressed using the follow ing

equation:

SU{n) = 0.2021 ln(ra) + 1 (7.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7. D is c u s s io n 120

Similarly, the speedup of the 100Mbit configuration can be regressed using

the follow ing equation:

SU(n) = 0.8721 ln (n) + 1 (7.4)

2.5

SpeedUp ioo = 0.8721Lnl n) + I

R2 = 0.9901

A — 100MBit

SpeedUpio = 0.2021Ln(n) + 1 ■m— 10MBit

R2 = 0.979

0.5

Computers

Figure 7.2: Large data 2D-FFT SpeedUp

The SpeedUp for 2D-FFT was observed to be substantially lower for the

largest data sets on the implemented cluster by comparison to the low data

sets. Analyses of the problem determined tha t some of the cluster members did

not have enough RAM to handle the calculations w ithout extensive swapping.

The amount of RAM in the cluster member computers was doubled and the

experiment involving the calculations of 2D-FFT for the largest data set was

conducted again. The new results of the experiment are shown in figure 7.3.

A super SpeedUp was achieved in the new configuration w ith a SpeedUp of

7.9 on a six machine cluster. The reason for the super SpeedUp was the

fact th a t the base (reference) tests for the largest data set were conducted on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7. D is c u s s io n 121

a cluster member whose memory was barely adequate to store the data on

which it computed. Some minor swapping occurred, which was compensated

by the swapping o f the cluster members equipped w ith less memory. When the

memory of a ll cluster members was upgraded, in order to elim inate swapping,

super SpeedUp was achieved.

100MBit
Large Mt
100MBitcu

■*— 10MBit

Computers

Figure 7.3: Large data 2D-FFT SpeedUp (Super SpeedUp)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7. D is c u s s io n 122

7 .1 .3 D istr ib u ted G rid C alcu lation

G rid calculations fa ll into medium I/O category of cluster calculations. The

speedup of d istributed m atrix m ultip lica tion for the largest data set is shown

in figure 7.4. The speedup model for the 10M bit configuration is a logarith

m ic function of the number o f cluster members. The speedup of the 10Mbit

configuration can be calculated using the follow ing equation:

SU(n) = 0.5255 ln (n) + 1.0337 (7.5)

The speedup model for the 100Mbit configuration is a quadratic function of

the number of cluster members. The speedup of the 100Mbit configuration

can be accurately regressed on the following quadratic expression:

SU{n) = —0.0373n2 + 0.9531n + 0.0829 (7.6)

SpeedUp ioo = -0.0373n + 0.953In

R2 = 0.9938

•A— 100MBit

■«— 10MBit

SpeedUp ip = 0.5255Ln(n) + 1.0337

R2 = 0.9912

Computers

Figure 7.4: Large data grid calculation SpeedUp

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7. D is c u s s io n 123

7.2 Distributed M atrix M ultiplication M odel

ing

The performance modeling of any computer system is a complex, application

and data specific, task. The sections below discuss the developed models for

the cluster’s SpeedUp while perform ing m atrix m ultip lication.

7.2 .1 D iscrete M odel

The discrete model appears to be well suited for the cluster perform ing the

computations on various (discrete) data sets.

IO Performance

The implemented cluster uses Ethernet network for member communications.

From section 2.1.1 it is known th a t data on an Ethernet network are trans

ferred in Ethernet frames tha t are later encapsulated by T C P /IP frames. The

developed model includes an I/O component whose analysis is included below.

M atrix Multiplication I/O Analysis

D istributed m atrix m ultip lica tion requires re lative ly low I/O . In order to mul

tip ly two matrices of size N x N the follow ing amount of data needs to be

transferred:
N 2

l / 0 (n , N) = S O F ({N 2 + — }n + N 2) (7.7)
?%

where SOF is the machine size of a floating po in t number, n the number of

cluster members, and N the number of rows and columns of a N x N square

m atrix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7. D is c u s s io n 124

On a network w ith a fin ite packet size, equation (7.7) needs to be rearranged

in order to calculate the number of packets required to send the data over the

network:

„ , . r S O F (N 2) S O F (N 2 /n) r S O F (N 2 /n) , . .
Packets(n, N) = { - — — } „ + { M p g } „ + { M p g }n (7.8)

Since the fractional packets cannot be combined, equation (7.8) needs to be

modified to allow the calculation of the actual amount of data sent over the

network. In order to determine the number o f packets required to transfer

th a t amount of data the following calculation is performed:

AcbualPackets(n, N) —

n rr / r S O F (N *) „ nTT r r S O F (N 2 / n) ^ nTT , f S O F (N 2 / n C .
= B U p i{ - M P S - })n + RDP{{ M P S >)n + R U P ({' - M P S " ' })n

(7.9)

where RUp is a round up or ceiling function and MPS is the maximum packet

size for the medium. We could define I /O Performance as

I /O Perffn.N) = ■ ■■ (™)
Actual Packets(n, N)

and after the expansion we obtain:

I /O Perf(n,N) = RUp({^mP})n + itt,F({*£§gM})„ + mp({s j m })n
(7.11)

We also define Cluster’s I /O Performance by comparing the number of packets

required to send the data to one and n cluster members.

In order to calculate the number o f packets required to send three N x N

matrices (m ultiplicands and results) to one cluster member we need to perform

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7. D is c u s s io n 125

the follow ing calculation:

Packets(l,N) = (7.12)

The Cluster’s I /O Perf would then be:

Cluster’s I /O Perf(n.N) = (7.13)

after expansion:

Cluster’s I /O Perf(n,N) =

 _____________________3W P({ S g g l }) ____________________

R Up({^P})n + fltlp({S2gM})n + R U p d ^ m })"
(7,14)

100%

99%>>0
1o 98%

97%

£
96%

95%

1 2 3 4 5 6 7 8 9 10

-2 CM

-3 CM

...sir- 4 CM

-•*- 5 CM

—m--6 CM

Matrix Size (xlOO)

Figure 7.5: Cluster I/O Performance for a distributed m atrix m ultip lica tion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7. D is c u s s io n 126

CPU Performance

The implemented m atrix m ultip lication algorithm illustra ted in figure 7.6 re

quires both integer and floating point operations. In order to m u ltip ly two

N x N matrices the processor has to perform the follow ing operations:

• N 3 floating point m ultip lications [FPM]

• 3N 3 + N 2 integer m ultip lications [IntM]

• N 3 floating point additions [FPA]

• 6N 3 + 2N 2 integer additions [IntA]

int MultiplyMatrix(float *a, int aRow, int aCol, float *b, int bRow, int bCol, float

int x, j , z;
f or(z=0;z<aRow;z++){

for(y=0;y<bCol;y++){
*(c+(z*bCol+y))=0;
for(x=0;x<aCol;x++)

*(c+(z*bCol+y)) += *(a+(z*aCol+x)) * *(b+(x*bCol+y));
>

>
return z*y*x;

>

Figure 7.6: M a trix m ultip lica tion algorithm

Cluster based, or distributed, matrix multiplication requires partitioning of the

data among all of the participating cluster members. The data partitioning

algorithm is illustrated In figure 7.7.

The simple algorithm allocates A rows of m atrix A as well as N rows of

m a trix B to each cluster member. The last cluster member is assigned either

A- rows of m a trix A or R U p (^) rows in the instance when N does not evenly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7. D is c u s s io n 127

offset = 0;
for(membercount = 0; membercount<n; membercount++){

cmData[membercount].matrixA = matrixA + offset; //move pointer to desired row of A
cmData[membercount].matrixB = matrixB; //move pointer to the first row of B
if(membercount < n-1) //allocate number of rows of array A

cmData[membercount].arrdims[0] = N/n; //integer division of the array
else //if data does not divide evenly allocate the reminder to the last machine

cmData[membercount].arrdims[0] = N - (N/n*(n-1)); //reminder
cmData[membercount].arrdims[1] = N; //allocate number of columns of array A
cmData[membercount].arrdims[2] = N ; //allocate number of rows of array B
cmData[membercount].arrdims[3] = N; //allocate number of columns of array B
cmData[membercount].result = resultmatrix + offset; //move pointer to desired row of C
offset += N*(N/n); //increment pointer offset for next cluster member

}

Figure 7.7: Data partition ing algorithm

divide by n. The number of CPU intensive operations performed by the cluster

w ill then be:

CPUOps(N) = F P M (N) + In tM (N) + F P A (N) + In tA {N) (7.15)

The maximum number of operations each cluster member w ill perform w ill

then be:

M axCPU O ps(n, N) = F P M {R U p (—))+ In tM (R U p (—))+ F P A (R U p (—))+ In tA {R U p {—)
n n n n

(7.16)

The theoretical CPU SpeedUp of the cluster w ill then be:

CPU SpeedUp(n,N) = (7.17)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7 . D is c u s s io n 128

and after expansion:

GPU SpeedUp(n,N) =

 N%p m + (31V3 + N 2)In tM + N%p a + (5 N s + 2 N 2) i ntA_______________________

(R U p & f p m + m u p & + (R U p(%)2)m tM + {R U p & F P A + (6 (W p (f) 3 + 2 (R U p (R y) IntA
(7.18)

Cluster Performance

The cluster’s performance is a function of several variables: cluster size, data

size, setup tim e or latency, communications or I/O performance, and CPU

performance. I/O performance and CPU performance have been determined

in the previous sections. The discrete model of the system’s performance

while perform ing m atrix m ultip lications can be determined using the following

relation:

r _ 1 CM Execution Tim e(N) r . AT,
ClusterPerf(n,N,IO, CPU) = —^ f _-------- ;-----— — r —SystemLosses(n,N)

1 y n CM Execution Tim e(N) v ’
(7.19)

where

1 CM Execution Tim e(N) = 1CM 10 Tim e(N) + 1CM CPUTim e(N)

(7.20)

1 CM 10 Tim e(N) = Packets(1,N) Packet Transfer Tim e (7.21)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7. D is c u s s io n 129

1 CM CPU Tim e(N) =

FP M (N)FP M T + In tM (N)In tM T + FPA(N)FPAT + In tA (N)In tA T 1

(7.22)

and

n CM Execution Tim e(N) = nCM 10 Tim e(N) + nCM CPUTime(N)

(7.23)

n CM 10 Tim e(N) = ActualPackets(n,N) Packet Transfer Time (7.24)

A fter expansion:

n CM CPU Tim e(N) = F P M (R U p (%))F P M T + In tM (R U p (%)) In tM T

+ F P A (R U p(—))F P A T + In tA (R U p (—)) In tA T
n n

(7.25)

and
tF

SystemLosses(n, N) — C — (7.26)

also

C = Ct C2 (7.27)

where C\ is a network speed constant and C2 is a dataset constant, both

obtained experimentally.

1FPMT: Floating Point Multiplication Time, IntMT: Integer Multiplication Time,
FPAT: Floating Point Addition Time, Int AT: Integer Addition Time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7. D is c u s s io n

Table 7.1: C\ and C2 Values

N etwork / Constant Ci c 2
10M Bit
100MBit

0.1
0.01

20000
40000

— Mod2

—m— Mod3

—&— Mod4

—X— Mod5

—X— Mod6

—• — Exp2

—H~Exp3

—-—Exp4

—• Exp 5

—«— Exp6

Figure 7.8: M atrix m ultip lica tion discrete model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7. D is c u s s io n 131

7.2.2 Continuous M odel

In order to perform continuous modeling of the response of the system one

needs to analyze the cluster as a system th a t changes in time. The following

considerations could be made when continuous modeling methods are to be

applied.

Let us examine the computational task involving a series of m atrix m u ltip li

cations. The sizes o f the matrices increase when the calculations o f the last

com putation are complete. The to ta l tim e required to perform the computa

tions is the sum of the com putation times of the varied sized matrices. The

system response is recorded at the end of each ite ra tion and the data is p lotted,

as in figures 7.11 and 7.12. The intervals at which the response is recorded

increase w ith the increase of the data on which the system computes.

D ata Transfer

The speed at which the system receives the data required for the com putation

plays a c ritica l role in the cluster’s performance. Figure 7.9 illustrates the

average rate at which the cluster receives data. Since the designed cluster used

shared Ethernet network, the transfer rate was decreasing as more machines

were added.

CPU Utilization

Experim ental data show tha t w ith the increase of cluster size the tim e spent

on calculations decreases. This is m ainly due to system overhead and to the

increased complexity of the scheduling and assignment of the tasks to cluster

members. The CPU u tiliza tion was calculated as the ra tio of the processing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7. D is c u s s io n 132

9200

9100

9000

8900

8800

8700

8600

8500

8400

2CM 3CM 5CM 6CM4CM

Cluster Mem bers

Figure 7.9: C luster transfer rate

tim e to the to ta l tim e required for the computation.

CPUum = ^ (7.28)
-t T o ta l

Exam ination of the experimental data shows tha t, the response of the

cluster perform ing m atrix m ultip lica tion often resembles the forced response

of an overdamped system. The overdamped system response can be calculated

as the solution o f the second order differentia l equation:

d2SU dSU 1 n _
A^ + p — + ysc/=0 (7 '29)

where A, p, and 7 are now considered as cluster parameters modeling the char

acteristics and SU is the system SpeedUp.

Equation (7.29) is as a homogenous second-order linear d ifferentia l equation

w ith constant coefficients (A, p, 7). The characteristic polynom ial associated

to (7.29) is:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7. D is c u s s io n 133

0.98

0.96

0.94

0.92

0 .9

0.88
0.86
0.84

0.82

0.8
6CM3CM 4CM 5CM2CM

Cluster Members

Figure 7.10: Cluster CPU u tiliza tion

P(s) = As2 + ps + - (7.30)
7

w ith roots:

(7 '3 l)

The forced response of the overdamped system characterized by (7.29) is

of the form [63]:

SU{t) = AeSlt + BeS2t + F (7.32)

where A and B are constants derived from in itia l conditions, namely:

517(0+) = A + B and d5^ ° .±). = SlA + s2B (7.33)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7. D is c u s s io n 134

and 577(0+) = —F and ^FjP+1 are obtained experimentally.

Examples o f the regression o f experimental data on a relation of the type

(7.32) are shown in figures 7.11 and 7.12. The close match o f the curve w ith

our data suggests tha t the com putational cluster may indeed undergo damp

oscillations during its operation. A lthough th is may not always be the case,

a significant number of the experimental plots suggests tha t. An immediate

conclusion to th is observation is tha t the performance of the computer cluster

may be at times highly dependent on the “response” frequency of the sys

tem when processing different computational loads. As many experimental

data cannot be regressed w ith sufficient accuracy on the solution of a damped

oscillation, it follows tha t normally homogenous equation (7.29) may be too

simple to capture the entire range of observed system response. We only want

to point out tha t occasionally the simple modeling presented here appears to

be appropriate and th a t it signals the oscillatory properties of the cluster.

Figure 7.13 gives the values of A, p and 7 obtained from the best f it regres

sion on relation 7.32. A closer analysis of the data revealed some interesting

facts related to parameters A, p and 7 .

1. I t has been observed tha t the linear increase in 7 is d irectly proportional

to the increase of memory in the system

Memory (n) = K iy (n) (7.34)

2. The linear decrease in p is d irectly proportional to the decrease of the

effective data transfer rate of the system.

Tran s fe r Rate{n) = p{n) (7.35)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7 . D is c u s s io n 135

Recorded Data
Model

50 100
Time[s]

150

Figure 7.11: M a trix m ultip lica tion 5 machine SpeedUp model 100MBit

3. The decrease in A is d irectly proportional to the decrease in CPU u tiliza

tion of the system. The following relation for A and CPUutu has been

observed:

CPUutil{n) = A (n) (7.36)

The performance increase of the system (SpeedUp) is closely related to a ll

o f those parameters. The model demonstrates tha t there are areas when it

is possible to predict, w ith reasonable accuracy the system SpeedUp, as a

function of tim e, using the observed characteristics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 7. D is c u s s io n 136

• Recorded Data
Model

20 40 60 80 100 120
71me[s]

Figure 7.12: M a trix m u ltip lica tion 6 machine SpeedUp model 100MBit

0.95

0 .9

0.85
2

0.8

0.75
5CM 6CM4CM3CM2CM

0.87 0.860.8750.91Rho

0.90.96 0.930.980.99

Gamma

Figure 7.13: A, p , j values for M a trix M u ltip lica tion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 8

Summary and Conclusions

Following the investigation into parallel computing by means of a variable com

puter cluster conducted and presented in th is dissertation some fina l comments

are required. Parallel programming is much more d ifficu lt than sequential pro

gramming. Programming for good performance requires much work, especially

in determ ining a good parallelization. Significant amount o f labour is required

to implement and orchestrate parallel programs and debugging such programs

is not a tr iv ia l task. The task is d ifficu lt because of the interactions among

m ultip le processes w ith the ir own program orders, and because of sensitivity

o f tim ing. Depending on when events in one process happen to occur relative

to events in another process, a bug in the program may or may not manifest

itse lf at run tim e in a particular execution.

Our research indicates tha t computer clusters are viable alternatives to

mainframes for com putation intensive applications. Applications th a t require

little I/O are especially suited for d istributed memory clusters, such as the

one tha t has been designed. The biggest challenge posed by the developed

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 8 . S u m m a r y a n d C o n c l u s io n s 138

machine was the process of mapping data onto the nodes. Ideally the data

would be evenly distributed so tha t the whole machine participates in the

computations. A t the same tim e, i t is im portant to position data “close” to

other data it participates into, because communication is very expensive. A t

any rate, it takes a fa ir amount of manual intervention and custom crafting to

develop a code th a t can run in parallel. Parallelism in an application is often

expressed serially in a fashion th a t obscures whatever parallelism once existed.

Converting a sequential algorithm to a parallel equivalent involves hard work

and hand tuning. The system designer has to coordinate the activities of the

different processors explicitly, usually through message passing.

The main idea behind the conducted research was to design and bu ild a

distributed computing cluster and to analyze its performance. The emphasis

was put on creating an open platform th a t could be used for development of

engineering applications requiring greater computing power than regular work

stations can deliver. Several factors influenced the design of the cluster. The

most notable factors include u tiliza tion of standard, off-the-shelf hardware,

adaptation o f standard operating system and networking software, scalability

and expendability, high performance to price ra tio , and fle x ib ility and ease of

configuration. By building an in itia l implementation of the d istributed com

puting cluster, hands-on experience has been acquired, which shows tha t a firs t

phase d istributed system can be b u ilt w ith an acceptable level of functionality.

However, im plementing a distributed computing cluster is a challenging task.

The obtained results show tha t this computing concept is feasible and tha t it

can be implemented efficiently on low cost hardware. The developed variable

cluster can be used to run engineering applications th a t require great process

ing power. Computing kernels for m atrix m ultip lication, 1-D and 2-D FFT,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 8 . S u m m a r y a n d C o n c l u s io n s 139

and electric fie ld calculator were designed and implemented. W hile clusters

are b u ilt on a regular basis, little research has been done in the modeling of

the ir performance. Data collected during the experiments were used to de

velop models of the cluster while perform ing m atrix m ultip lica tion in discrete

and continuous domains. Accurate models were developed and compared w ith

the collected data.

Clusters offer great performance at a low cost. The research indicates tha t

it is im portant to match a problem to a machine. D istributed computing re

quires partition ing of the problem and orchestration of the computations. I t

was observed th a t I/O intensive problems do not benefit from cluster tech

nologies. A simple formula

T l / o <-~ T F lo a tin g P o in tO p e ra tio n s

is proposed for a quick assessment o f the applicab ility of the designed cluster

to a given problem. Implementations where more than 50% of tim e is spent on

I/O do not benefit from the designed cluster architecture. The ideal candidate

for a cluster application has a com putational complexity of 0 (n2) or greater.

Sample applications include: m atrix operations (imaging operations) and grid

operations (sim ulations).

The collected results obtained from several applications run on the cluster

allowed for the analysis of its performance. Data were used to calculate system

SpeedUp and selected sets of cases served to develop models of the experimen

ta l system. Two cluster models, discrete and continuous, were advanced. The

close match of the developed models w ith our data suggests th a t the computa

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 8. Su m m a r y a n d C o n c l u s i o n s 140

tiona l cluster may undergo damp oscillations during its operation. A lthough

th is may not always be the case, a significant number of the experimental

plots suggests that. An immediate conclusion to this observation is that the

performance of the computer cluster may at times be highly dependent on the

“response” frequency of the system when processing different com putational

load. The model inherently signals the oscillatory properties of the cluster.

PC clusters are commonly used for conducting scientific calculations. The

absolute performance of such clusters is not attractive compared to massively

parallel processors, because the performance of interconnecting networks is

not good enough, especially w ith communication intensive applications. How

ever, a good cost to performance ra tio can be achieved in these clusters. Such

systems are interesting as research prototypes, but none of them has been ac

cepted as a common platform . D istributed memory parallel machines are the

only vehicle for applying many processors to an individual problem. However,

quite often the performance of systems employing m ultip le processors does not

scale or increase at a satisfactory rate w ith the number of processors available

for computations. There are many advantages of these systems tha t can be

custom tailored to an application. The designer is not restricted to generic

implementations available on the market. A custom tailored system can be

used to process data available in any form and anywhere. Computations can

also be scheduled at times when computers are idling. Since the cluster server

is aware of a ll available cluster members, it can assign the data and collect

the results of computations when they become available. If fa ilure of a cluster

member is detected, it would be possible to reassign the failed cluster mem

ber’s data to a member tha t has finished computations. W ith m ultip le cluster

members a high degree of redundancy can be achieved. Cluster computing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 8 . S u m m a r y a n d C o n c l u s io n s 141

does not come w ithout a price. In order to benefit from the cluster’s power

one needs to develop programs th a t u tilize the hardware efficiently. Frequently

it is d ifficu lt, and sometimes impossible, to convert a sequential program into

a parallel equivalent. From our study it follows tha t problems th a t require

much communication are not well suited for a cluster implementation.

8.1 Recommendations for Future Work

The developed system performed at a satisfactory level. Several aspects could

be improved or optim ized to increase the overall performance o f the system.

The sections below address the most notable ones.

The cluster does not u tilize the cluster server during computations. The

prim ary role of the server, aside from cluster management and task allocation,

was to record accurate measurements of execution times during experiments.

The server of course could be utilized to perform computations on a set of

data. The communications w ith the cluster members would be reduced and

the overall performance would certainly increase.

The I/O operations are synchronous. The computation is not started un

less a ll data are received. Since the data on which the computations are

performed are stored in consecutive memory locations, it would be possible to

start computations as soon as a set of data is received. In addition, the par

tia lly computed results could be sent to the server as soon as they are available.

Such optim ization would especially benefit the 2D-FFT application, where a

large portion of the execution tim e is devoted to I/O .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 8 . S u m m a r y a n d C o n c l u s io n s 142

The experiment illustrated the applicability of a distributed computing

cluster to perform computations of the selected engineering application. Very

little optim ization has been performed. The prim ary concern was the correct

ness o f the results. I t would be possible to tune the code, especially when it

comes to memory references during matrix m ultip lica tion operation. M u lti

threaded routines could also be added for computations and the overlapped

I/O , as discussed above.

Basic fa u lt tolerance has been implemented in the experimental system.

The server is capable of recognizing a crashed cluster member. When such

a problem is detected, the server continues to run and collects results of the

com putation from the running cluster members. The server then notifies the

operator about the cluster member tha t failed and the problem can be ad

dressed by the operator. However, such failures cause the whole computation

to fa il, as there are no results from the machine to which the com putation was

assigned. A possible improvement would involve an assignment of the data

belonging to the fau lty cluster member to the firs t cluster member to finish

its assigned computations.

Cluster management tasks, such as cluster member registration and com

putational power assessment, are performed manually. The operator must also

know how many cluster members w ill participate in the experiment/ calculations

before he/she schedules any computations on the cluster. Such tasks could be

automated. C luster members could be added and removed dynam ically to

and from a database maintained by the server. Machines w illing to partic

ipate in the cluster could be given a pre-registration assessment test whose

results would be used to rank the com putational power o f the participant. By

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h a p t e r 8. S u m m a r y a n d C o n c l u s io n s 143

the same token, the removal of cluster members could be automated. For ex

ample, any failure detected during computations would cause de-registration

of the cluster member.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A ppendix A

Cluster Program Listings

The cluster code consists of three parts. The firs t part contains lib ra ry func

tions utilized by both the server and cluster member. The second part con

tains the client code and fina lly the th ird part contains the server code. For

the sake of brevity only the 2D-FFT code for the server and the members has

been included in th is appendix. The code for latency, datatrasfer and m atrix

m ultip lica tion is very sim ilar to the one listed below.

A .l C luster L ibraries

In order to sim plify the development of the cluster server and the cluster meme-

bers several auxiliary libraries have been implemented. The lib ra ry functions

are responsible for handling socket communications, m atrix operations and

database connectivity.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d ix A . C l u s t e r P r o g r a m L is t in g s

A .1.1 Socket L ibrary

socket.c

in c lu d e < s td io .h >

#in c lu d e < sy s /ty p e s ,h >

in c lu d e < sy s /so c k e t.h >

in c lu d e < n e t in e t / in .h >

in c lu d e <netdb.h>

i n t r e a d b u f f e r (i n t s o c k e t, v o id * b u f f e r , i n t b y te s) ;

i n t w r i te b u f f e r (i n t s o c k e t, v o id * b u f f e r , i n t b y te s) ;

/ / D efine an I n t e r n e t a d d re ss g iv en a h o s t and p o r t .

se tad d rC sp , h o s t , p o r t)

s t r u c t so ck ad d r_ in *sp;

ch ar * h o st;

i n t p o r t ;

{
s t r u c t h o s te n t *hp;

hp = g e th o s tb y n a m e (h o s t) ; /* se a rc h e s / e t c /h o s t s * /

i f (hp == NULL) {

f p r i n t f (s t d e r r , " '/,s: unknown h o s t \n " , h o s t) ;

e x i t (l) ; }

sp -> s in _ fam ily = AF.INET;

bcopy(hp-> h_addr, & sp-> sin_addr, h p -> h _ le n g th) ;

sp -> s in _ p o rt = h to n s (p o r t) ;

>

/ / C rea te a s tream so c k e t and b in d i t to th e g iv en p o r t number,

i n t s t re a m s o c k e t(in t p o r t)

i n t s ;

s t r u c t 3ockaddr_ in s in ;

s i n . s in _ fam ily = AF.INET;

s in . s in .a d d r .s _ a d d r = INADDR_ANY; /* sh o rth an d f o r ‘t h i s h o s t ’ * /

/* h to n sO c o n v e rts th e p o r t number to netw ork b y te o rd e r * /

s in .s in _ p o r t = h to n s (p o r t) ;

s = s o c k e t(AF_INET, SOCK_STREAM, 0) ;

i f (s < 0)

e r r o r (" s o c k e t ") ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d i x A . C l u s t e r P r o g r a m L is t in g s

i f (b in d (s , & sin , s iz e o f s in) < 0)

e r r o r (" b in d ") ;

r e tu r n s ;

>

I I System c a l l f a i l e d : p r i n t a message and g iv e up.

e r r o r (c h a r *m sg;)

{
e x te rn c h a r *myname; /* program name * /

f p r i n t f (s t d e r r , "”/,s: " , myname);

p e r ro r (m s g) ;

e x i t (l) ;

>

I I F u n c tio n re a d b u f fe r e n su re s t h a t th e e n t i r e ex p ec ted d a ta h as been re a d

i n t r e a d b u f f e r (i n t so c k e t, v o id * b u f f e r , i n t b y te s)

{
i n t count=0;

i n t b r ;

w h ile (co u n t < b y te s) { /* loop u n t i l f u l l b u f f e r * /

i f ((b r = re a d (so c k e t .b u f f e r , b y te s -c o u n t)) > 0) {

count += b r ; / * in crem en t b y te c o u n te r *1

b u f f e r += b r ; I * move b u f f e r p t r f o r n e x t re a d *1

>
i f (b r < 0) I * s ig n a l an e r r o r to th e c a l l e r *1

r e t u m (- l) ;

>
r e tu m (c o u n t) ;

}

I I F u n c tio n re a d b u f fe r e n su re s t h a t th e e n t i r e e x p ec ted d a ta has been s e n t

i n t v r i t e b u f f e r (i n t s o c k e t , v o id * b u f f e r , i n t b y te s)

{
i n t co un t= 0 ;

in t b r ;

w h ile (coun t < b y te s) { /* loop u n t i l f u l l b u f f e r * /

i f ((b r = w r i te (s o c k e t .b u f f e r , b y te s -c o u n t)) > 0) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d i x A . C l u s t e r P r o g r a m L is t in g s 147

count +“ b r ; /* increm ent b y te c o u n te r * /

b u f f e r += b r ; /* move b u f f e r p t r f o r n e x t re a d * /

}
i f (b r < 0) /* s ig n a l an e r r o r to th e c a l l e r * /

r e t u m (- l) ;

}
r e tu r n (c o u n t) ;

>

A .1.2 D a ta b a se Library

sqllib.h

d e f in e HSGSIZ 1

d e f in e BUFFER 1024

in c lu d e < s td io .h >

in c lu d e < a td l ib .h >

in c lu d e <m ysql/m ysql. h>

v o id e x ite r rC i n t e x itc o d e) ; / / MySQL e r r o r h a n d lin g fu n c tio n

i n t OpenDBC c h a r *DB) ; I I Open D atabase DB

i n t CloseDBO; I I C lose Open D atabase

i n t C re a teT a b le (char *name) ; I I C rea te T ab le name

i n t In se rtD ataC ch ar * ta b le , i n t CPU, i n t E th e r , f l o a t D ata , f l o a t Time, f l o a t CPUTime, f l o a t lOTime

i n t ShowTable(c h a r * t a b l e) ; / / Show Table t a b le

MYSQL m ysql;

MYSQL.RES * re s ;

MYSQL_R0W row;

sqllib.c

in c lu d e " s q l l i b . h 11

I I C re a te a t a b l e f o r an experim ent i n th e re s e a rc h d a ta b ase

i n t C reateT ableC ch ar *name)

{
c h a r s q lS t r [1024] ;

ch a r d e f i n i t i o n [1000];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d ix A . C l u s t e r P r o g r a m L i s t i n g s 148

strcpy(sq lS tr,"C R E A T E TABLE ") ;

s t r c a t (s q l S t r , name);

s t r c a t (s q l S t r , " \n (ExpID INT NOT NULL AUTO_INCREMENT, \ n ") ;

s t r c a t (s q l S t r , "Date TIMESTAMP(1 4) , \ n ") ;

s t r e e t (s q l S t r , "HostCPU INT NOT NULL.Nn");

s t r c a t (s q l S t r , "E th e rn e t INT NOT N U LL,\n");

s t r c a t (s q l S t r , "D ataSet FLOAT (1 0 ,2) NOT NULL,\n");

s t r c a t (s q l S t r , "RunTime FLOAT (6 ,2) NOT NU LL,\n");

s t r c a t (s q l S t r , "CPUTime FLOAT (6 ,2) NOT NU LL,\n");

s t r c a t (s q l S t r , "IOTime FLOAT (6 ,2) NOT N U LL,\n");

s t r c a t (s q l S t r , "PRIMARY KEY (ExpID)) \ n ") ;

i f (m y sq l.q u ery (to n y sq l, s q l S t r))

e x i t e r r (3);

r e tu r n 0;

>
I I P r i n t an SQL e r r o r code

v o id e x i t e r r (i n t e x itc o d e)

■C
f p r i n t f (s t d e r r , " ’/ ,s \n " , raysql_error(& m ysql)) ;

e x i t (e x i tc o d e) ;

y

I I I n s e r t a re c o rd in to a g iv en ta b le

i n t In s e r tD a ta (char * ta b le , i n t HostCPU, i n t E th e rn e t , f l o a t D a taS et, f l o a t RunTime, f l o a t CPUTime, f l o a t IOTime)

ch ar s q l S t r [1024];

ch ar v a lu e s [1000] ;

s p r i n t f (s q l S t r , "!4s%s", "INSERT INTO ", t a b l e) ;

s t r c a t (s q l S t r , " (HostCPU, E th e r n e t , D a ta S e t, RunTime, CPUTime, IOTime) \ n ") ;

s p r i n t f (v a lu e s , "VALUES C/,d, ”/,d, I f , */,f, '/,f, '/.f) " , HostCPU, E th e rn e t , D a taS e t, RunTime, CPUTime, IOTime);

s t r c a t (s q l S t r , v a lu e s) ;

i f (m ysql.query(fem ysql, s q l S t r))

e x i t e r r (3) ;

r e tu r n 0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d i x A . C l u s t e r P r o g r a m L is t in g s

>

I I Show a l l r e c o rd s in a g iv en ta b le

i n t ShowTable(ch ar s t a b le)

{
c h a r s q lS t r [1024] ;

i n t i ;

s p r i n t f (s q lS t r , ""/,s'/.s", "SELECT * FROM ", t a b l e) ;

i f (m ysql.query(fcm ysql, s q lS t r))

e x i t e r r (3) ;

i f (! (r e s = m y sq l_ s to re _ re su lt(f tm y sq l)))

e x i t e r r (4);

w h ile ((row = m y s q l_ fe tc h _ ro v (re s)))

I
f o r (i= 0 ; i< m y sq l_ n u m _ fie ld s (re s) ; i++)

p r in tf (" % s ", ro w [i]) ;

p r i n t f (" \ n ") ;

}

i f (!m y sq l_ eo f(re s))

e x i t e r r (5) ;

m y s q l_ f r e e _ r e s u l t (r e s) ;

r e tu r n 0;

>

I I Open a d a ta b ase

i n t 0penDB(ch ar * DB)

{
i f (! (m y sq l_ co n n ect(tan y sq l,"asu s2 p 3 " , " r o o t" , " ")))

e x i t e r r (l) ;

i f (m ysql_select_db(& m ysql, DB))

e x i t e r r (2) ;

>

I I C lose a d a tab ase

i n t CloseDBO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d i x A . C l u s t e r P r o g r a m L is t in g s

m ysq l_close (& m ysql);

r e tu r n 0;

>

A .1.3 S y stem Library

system.c

in c lu d e < s td io .h >

i n t getC PU Info(f l o a t *) ;

i n t getSw aps(i n t *sw apout, i n t *sw ap in);

i n t g e tC P U In fo (flo a t *mhz)

{
FILE * p r o c f i le ;

char b u f f e r [80];

*mhz = -1 ;

p r o c f i l e = f o p e n (" /p ro c /c p u in fo " , " r") ;

i f (p r o c f i l e == HULL)

r e t u r n (- l) ;

w h i le (f g e ts (b u f f e r , 80, p r o c f i l e))

i f (s trn c m p (b u f fe r , "cpu MHz” , 7)==0){

ss c a n f (Scbuffer [1 1], ”'/,f " , mhz) ;

b r e a k ;}

f c l o s e (p r o c f i l e) ;

r e t u r n (0) ;

>

i n t getSw aps(i n t *sw apout, i n t *swapin)

{
FILE * p r o c f i le ;

ch ar b u f f e r [8 0], tem p[80];

♦swapout = *sw apin = -1 ;

p r o c f i l e = f o p e n (" /p r o c / s t a t " , ”r ") ;

i f (p r o c f i l e == NULL)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d ix A . C l u s t e r P r o g r a m L i s t i n g s

r e t u r n (- 1) ;

w h i le (f g e ts (b u f f e r , 80, p r o c f i l e))

i f (s tm c m p (b u f fe r , "swap", 4)==0){

ss c a n f (b u f f e r , " '/.s */,d '/,d", tem p, sw apin, sw ap o u t);

b re a k ;}

f c lo s e (p r o c f i l e) ;

r e tu m (O) ;

}

A .1.4 M a tr ix Library

arrayops.h

in c lu d e < s td io .h >

S in c lu d e < s td l ib .h >

#in c lu d e < sy s /tim e .h >

v o id P r in tM a tr ix (f l o a t *M, i n t a , i n t b) ;

v o id CreateRandom M atrix (f l o a t *M, i n t a , i n t b) ;

v o id C re a te ld e n ti ty M a tr ix (f l o a t *M, i n t a , i n t b) ;

v o id C reateO nesM atrix (f l o a t *M, i n t a , i n t b) ;

v o id R o ta te M a trix (f l o a t *M, i n t row s, i n t c o ls) ;

v o id P r in tM a tr ix (f l o a t *M, i n t a , i n t b) ;

i n t CompareM atrix (f l o a t *M1, f l o a t *M2, i n t a , i n t b) ;

i n t P o p u la teM atrix (f l o a t *M1, f l o a t *M2, i n t a , i n t b) ;

i n t M u lt ip ly M a tr ix (f lo a t * , i n t , i n t , f l o a t *, i n t , i n t , f l o a t *) ;

i n t GetRows(f l o a t *Source, i n t SRows, i n t SC ols, i n t StartR ow , i n t EndRow, f l o a t * D e s t) ;

i n t G etC ols(f l o a t *Source, i n t SRows, i n t SC ols, i n t S ta r tC o l , i n t EndCol, f l o a t * D e s t) ;

v o id S o r tM a tr ix (f l o a t *M, i n t rows, i n t c o l s) ;

f l o a t ExpTime(s t r u c t t im e v a l, s t r u c t tim e v a l) ;

arrayops.c

in c lu d e "a rra y o p s .h "

/ / F u n c tio n f o r s o r t in g e lem en ts of a m a trix

v o id S o rtM a trix (f l o a t *M, i n t rows, i n t c o ls)

{
i n t c o u n t, i , j ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d i x A . C l u s t e r P r o g r a m L is t in g s

f l o a t temp;

coun t = row s*co ls;

f o r (i = 0 ; i< c o u n t; i++)

f o r (j = i ; j < co u n t; j ++)

I f (*(M+1) > *(M+j)){

temp = *(M +i);

*(M+i) = * (M+j) ;

*(M+j) = tem p;}

}
/ / F u n c tio n f o r " r o ta t in g " a m a tr ix , rows become c o ls

v o id R o ta teM atrix (f l o a t *M, i n t row s, i n t c o ls)

{
f l o a t *temp;

i n t o f f s e t , row count, c o lc o u n t ,n ,i= 0 ;

i f ((temp - (f l o a t *)m a llo c (ro w s * c o ls * s iz e o f (f lo a t))) == NULL H

p r in tf (" C a n n o t a l lo c a te mem f o r r o t a t i n g m a tr ix ") ;

e x i t (- l) ;}

fo r(c o lc o u n t= 0 ; c o lc o u n t< c o ls ; co lcoun t+ +){

o f f s e t = c o ls * (ro w s - l) + c o lc o u n t;

fo r(ro w co u n t= 0 ; rowcount <rows; row count++){

*(tem p+i++) = * (H + o ffs e t) ;

o f f s e t -= c o ls ;}

}
n = row s*co ls;

fo r (i= 0 ; i< n ; i+ +)

*(H+i) = * (tem p + i) ;

f r e e (te m p) ;

}
/ / F u n c tio n o f p r in t i n g e lem en ts o f a m a tr ix in a human re ad a b le form

v o id P r in tM a tr ix (f l o a t *M, i n t a , i n t b)

{
i n t i , j ;

f o r (i= 0 ;i< a ;i+ +){

f o r (j= 0 ;j< b ;j+ +)

p r i n t f (“•/..2 f ” , *(M + (i*b+ j))) ;

p r i n t f (" \ n ") ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d i x A . C l u s t e r P r o g r a m L is t in g s

>
>
/ / F u n c tio n f o r m u lt ip ly in g two a r b i t r a r i l y s iz e d m a tr ic e s , no e r r o r checks

i n t M u lt ip ly M a tr ix (f lo a t *a , i n t aRow, i n t aC ol, f l o a t *b, i n t bRow, i n t bC ol, f l o a t *c)

i n t x , y , z ;

f o r (z = 0 ; z<aRow; z++){

fo r(y « 0 ;y < b C o l;y + +){

* (c+ (z*bC ol+ y))=0;

f o r(x = 0 ; x<aC ol; x++)

* (c+(z*bC ol+y)) += *(a+(z*aC ol+ x)) * * (b+(x*bC ol+y)) ;

}
}
r e tu r n z*y*x;

}
I I F u n c tio n f o r p o p u la t in g a m a tr ix w ith random d a ta

v o id CreateRandom M atrix (f l o a t *M, i n t a , i n t b)

{
i n t i , number;

number = a*b;

srand(tim e(N U LL)) ;

f o r (i= 0 ; i<num ber; i ++)

*(M+i) = ra n d O ;

}
/ / F u n c tio n f o r p o p u la t in g a m a tr ix w ith l ’s

v o id C reateO nesM atrix (f l o a t *M, i n t a , i n t b)

{
i n t i , number;

number = a*b;

f o r (i= 0 ; i<num ber;i++)

*(M+i) = 1 .0 ;

}
/ / F u n c tio n f o r c r e a t in g an I d e n t i t y m a trix

v o id C re a te ld e n ti ty M a tr ix (f l o a t »M, i n t a , i n t b)

{
i n t i , number, o f f s e t ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d i x A . C l u s t e r P r o g r a m L is t in g s

number = a*b;

o f f s e t = a+1;

*M = 1;

f o r (1=1; K num ber; i++)

i f (i= = o f f s e t)

*(M+i) = 1; o f f s e t += a+1;

e l s e

*(M +i)=0;

}
/ / F u n c tio n f o r com paring th e c o n te n ts o f two m a tr ic e s

i n t Com pareM atrix (f l o a t *H1, f l o a t *M2, i n t a , i n t b)

I
i n t i , co u n t;

count = a*b;

f o r (i = 0 ; i< c o u n t; i++)

i f (* (M l+ i) != *(M 2+i))

r e tu r n -1 ;

r e tu r n 0;

I I F u n c tio n f o r copying a m a trix

i n t P o p u la te M a trix (f l o a t *M1, f l o a t *M2, i n t a , i n t b)

{
i n t i , n;

n = a*b;

f o r (i= 0 ; i< n ; i++)

*(M l+ i) = * (H 2+ i);

r e tu r n n ;

}
/ /F u n c t io n GetRows a s s ig n s rows of d a ta from m a tr ix sou rce to m a tr ix d e s t

/ / I t r e tu r n s number o f assig m en ts perform ed

i n t GetRows(f l o a t *Source, i n t SRows, i n t SC ols, i n t S tartR ow , i n t EndRow, f l o a t *Dest)

i n t o f f s e t , c o u n te r , end;

o f f s e t = St artRow *SCols;

end = EndRow+SCols + SCols;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d ix A . C l u s t e r P r o g r a m L i s t i n g s

f o r (c o u n te r = o f f s e t ; counter<end; c o u n te r+ t)

* (D est + (c o u n te r - o f f s e t)) = * (Source + c o u n te r) ;

r e tu r n (c o u n te r - o f f s e t) ;

}
/ /F u n c t io n GetCols a s s ig n s columns of d a ta from m a tr ix so u rce to m a tr ix d e s t

/ / I t r e tu r n s number o f assig m en ts perform ed

i n t G e tC o ls(f l o a t *Source, i n t SRows, i n t SC ols, i n t S ta r tC o l , i n t EndCol, f l o a t *Dest)

{
i n t o f f s e t , O ffC ounter, E lC o u n te r, endE lC o u n ter;

i n t d e s tc o u n t = 0;

f l o a t t ;

endE lC ounter = EndCol - S ta r tC o l;

o f f s e t = 0;

f o r (O ffC ounter = 0; O ffC ounter < SRows; OffCounter++){

o f f s e t = S ta r tC o l + SCols * O ffC ounter;

f o r (E lC oun ter = 0; E lC ounter <= endE lC ounter; ElCounter++)

t = * (D est + d estcoun t+ +) = *(Source + (o f f s e t + E lC o u n te r)) ;

}
r e tu r n d e s tc o u n t;

>
/ / F u n c tio n ExpTime r e tu r n s e x p ire d tim e betw een s t a r t t v and en d tv e v en ts

f l o a t ExpTime(s t r u c t tim e v a l s t a r t t v , s t r u c t t im e v a l e n d tv)

f l o a t ETime=0;

f l o a t f ra c t io n = 0 ;

ETime = e n d tv .tv _ s e c - s t a r t t v . t v _ s e c ;

f r a c t i o n = e n d tv .tv _ u se c - s t a r t t v . t v _ u s e c ;

f r a c t i o n /= 1000000;

i f (f r a c t io n < OH

f r a c t io n = - f r a c t io n ;

ETime = ETime - 1 + f r a c t io n ;

}
e ls e

ETime = ETime + f r a c t io n ;

r e tu r n (ETim e);

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d i x A . C l u s t e r P r o g r a m L is t in g s

A.2 2D-FFT Code

A .2.1 Server

c lu s te rs e rv e r.c

/ *

* c lu s te r s e r v e r p o r t

* C lu s te r S e rv e r.

* CS g e n e ra te s d a ta and sends i t to c lu s te rae m b ers f o r com puta tions.

* CS c o l l e c t s th e r e s u l t s and re c o rd s th e e x e c u tio n tim e in DB.

* A ssum ption: a l l c lu s te r memebers have th e same computing power.

* /

in c lu d e < s td io .h >

in c lu d e < sy s /ty p e s .h >

in c lu d e < sy s /so c k e t.h >

t in c lu d e <net i n e t / i n .h>

in c lu d e < sy s/tim e .h >

#in c lu d e < u n is td .h >

in c lu d e < ctype.h>

in c lu d e < p th read .h>

in c lu d e < s ig n a l .h>

in c lu d e "a r ra y o p s .h "

in c lu d e " s q l l ib .h "

S d e fin e REPETITIOUS 10

d e f in e STARTSIZE 128

d e f in e ENDSIZE 4096

i n t MAXMEMBERS;

c h a r *myname, * p o r t ;

v o id *computeMM(void * a rg) ; / / Thread fu n c tio n

i n t Com puteFFT(float * m a tr ix , i n t s i z e , f l o a t * t im e S ta t s) ;

v o id s ig n a l_ h a n d le r (i n t s ig n a l) ;

ty p e d e f s t r u c t !

i n t so c k e t; / / d e s t in a t io n so ck e t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d i x A . C l u s t e r P r o g r a m L is t in g s

f l o a t *m atrix ;

i n t a rrd im s [2] ;

/ / s t a r t a d d re ss o f d a ta m a trix

/ / AX, AY

f l o a t v o l a t i l e * r e s u l t ; / / s t a r t a d d re ss o f th e r e s u l t m a trix

p th read _ m u tex _ t * lo ck ; / / lo ck f o r lo c k in g th e a cc ess to t im e S ta ts

f l o a t v o l a t i l e * t im e S ta ts ; / / 10, CPU

i n t th read ID ;

} th rea d D a ta ;

/ / Thread ID

i n t * s; / / Conimunication so c k e t v a r ia b le s , a l lo c a te d d y n am ically

s t r u c t so ck ad d r_ in * s i n t ;

c h a r *cmName[4] = I"cm 4", "cm3", “cm2", "cm l"}; //C om puter names o f c lu s t e r members

p th re a d _ t * cmThread; / /T h re a d v a r ia b le s

th re a d D a ta * cmData;

p th read_m utex_ t lo c k ;

m a in (a rg c , argv)

ch a r *a rg v [] ;

i n t a r rd im s [2];

i n t n , z e ro , r v a l , c o u n te r , membercount, o f f s e t , r e p e a t;

s t r u c t t im e v a l s t a r t t v , e n d tv ;

s t r u c t tim ezone t z ;

ch ar ta b le [80] ;

f l o a t *m atrix ;

f l o a t expTime[REPETITIONS], expTimeAve;

f l o a t * t im e S ta t , lOTimeAve, CPUTimeAve;

signal(S IG PIP E , s ig n a l_ h a n d le r) ; / / Try to c a tc h CM f a u l t s ig n a ls

myname = a rg v [0];

i f (a rg c < 3) {

f p r i n t f (s t d e r r , "usage; '/,s p o r t members [ta b le] \n " , myname) ;

e x i t (l) ;}

p o r t = argv [1];

MAXMEMBERS = a to i (a r g v [2]) ;

i f (MAXMEMBERS > 0 && MAXMEMBERS < 5){

fo r (n = 0 ;n<MAXMEMBERS;n++)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d i x A . C l u s t e r P r o g r a m L is t in g s

p r i n t f (" ’/.s " , cmNarne [n]) ;

p r in tf (" m a c h in e s t h a t w i l l p a r t i c i p a t e in th e e x p e r im e n t\n ") ;}

e ls e {

p r in t f (" C u r r e n t ly o n ly 1 t o 4 m achines can p a r t i c i p a t e in th e e x p e rim e n t\n ") ;

e x i t (- !) ; >

s = (i n t *) calloc(MAXMEMBERS, s i z e o f (i n t)) ; / / I n i t i a l i z e Communication so c k e ts

i f (s == NULLH

f p r in t f (s td e r r ," C a n n o t a l lo c a te memory f o r com m unication s o c k e ts ! ") ;

e x i t (2);>

s i n t = (s t r u c t so ck ad d r_ in *) calloc(MAXMEMBERS, s i z e o f (s t r u c t s o c k a d d r_ in)) ;

i f (s i n t == NULLH

f p r in t f (s td e r r ," C a n n o t a l l o c a t e memory f o r com m unication s t r u c t s ! ") ;

e x i t (2) ;}

t im e S ta t = (f l o a t *) m alloc(2*R E PE T IT ID N S*sizeof(float)) ;

i f (t im e S ta t == NULLH

f p r i n t f (s t d e r r , "Cannot a l lo c a te memory f o r tim e s t a t s ! ") ;

e x i t (2) ;}

cmThread = (p th re a d _ t *)calloc(MAXMEMBERS, s i z e o f (p t h r e a d . t)) ;

i f (cm lhread == NULLH

f p r in t f (s td e r r ," C a n n o t a l lo c a te memory f o r t h r e a d s ! ") ;

e x i t (2) ;}

cmData = (th rea d D a ta *) calloc(MAXMEMBERS, s iz e o f (th re a d D a ta)) ;

if(cm D ata - - NULLH

f p r i n t f (s t d e r r , "Cannot a l l o c a t e memory f o r th re a d d a ta ") ;

e x i t (2) ;}

i f (a rg c == 4){

OpenDB(" re se a rc h ") ;

s t r c p y (t a b l e , a rgv [3]) ;

p r i n t f ("R e su lts w i l l be s to re d in r e s e a r c h . ‘/,s t a b le A n " , t a b l e) ;

C re a teT a b le (ta b le) ; }

e ls e

p r in t f (" R e s u l t s w i l l n o t be reco rd ed N n ");

f o r (c o u n te r = STARTSIZE;counter<=ENDSIZE;counter = co u n te r* 2){

f o r (re p e a t = 0;repeat<REPETITI0NS; re p e a t+ + H

* (tim e S ta t + 2 * re p e a t) = * (tim e S ta t + 2 * rep ea t +1) = 0;

a r rd im s [0] = a r rd im s [1] = co u n te r;

m a tr ix = (f l o a t *) m a llo c (a r rd im s [0]* a r rd im s [1]* s i z e o f (f l o a t)) ;

C rea teO n esM atrix (m atrix , a r rd im s [0] , a r rd im s [1]) ;

g e tt im e o fd a y (& s ta r ttv , & tz) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d ix A . C l u s t e r P r o g r a m L is t in g s 159

Com puteFFT(m atrix, c o u n te r , (t im e S ta t + 2 * re p e a t)) ;

R o ta te M a tr ix (m a tr ix , a r rd im s [0] , a r rd im s [1]) ;

Com puteFFT(m atrix, c o u n te r , (t im e S ta t + 2 * re p e a t)) ;

g e ttim eo fd ay (& en d tv , & tz) ;

* (t im e S ta t + 2 * re p ea t) /= MAXMEMBERS; //N o rm a liz e S ta ts

* (t im e S ta t + 2 * re p e a t+ l) /= MAXMEMBERS;

/ / C o rre c tn es check. Elem ent 0 ,0 sh o u ld be " A*B

p r i n t f ("M[0] [0] : f,i Should be c lo s e to : '/ ,f \n " ,* m a tr ix , (f l o a t) a r r d im s [0]* a rrd im s[1]) ;

f r e e (m a tr ix) ; / / f r e e memory f o r n e x t round of com putations

ex p T im e[repea t] “ ExpTime(s t a r t t v , en d tv) ;

p r i n t f ("Run: */,d Time: */,.2f CPU */,.2f 10: "/,. 2 f \n " , r e p e a t+ l , expTime [re p e a t] , * (tim e S ta t+ 2 * re p e a t+ l) ,

* (t im e S ta t+ 2 * re p e a t)) ;

>
SortM atrix (expT im e, 1, REPETITIONS);

P rin tM a trix (ex p T im e , 1, REPETITIONS);

R o ta te M a tr ix (tim e S ta t , REPETITIONS, 2);

S o r tM a tr ix (t im e S ta t , 1, REPETITIONS);

SortM atrix((tim eStat+R EPETITIO N S), 1, REPETITIONS);

P r in tM a tr ix (t im e S ta t , 2 , REPETITIONS);

expTimeAve = IOTimeAve = CPUTimeAve = 0;

for(n=l;n<R E PE T ITI0N S-l;n++){

expTimeAve += expTim e[n];

IOTimeAve += * (t im e S ta t + n) ;

CPUTimeAve += * (t im e S ta t + REPETITIONS + n) ;}

if(REPETITI0NS>2){

expTimeAve /= (REPETITIONS-2);

IOTimeAve /= (REPETITIONS-2);

CPUTimeAve /= (REPETITIONS-2);>

i f (a r g c == 4) / / re c o rd r e s u l t in db i f r e q u ir e d

I n s e r tD a ta (t a b l e , 120, 10, (f l o a t) a r r d im s [0]* a rrd im s[1]* s i z e o f (f l o a t) , expTimeAve, CPUTimeAve, IOTimeAve);

p r i n t f ("A verage Time e x p ire d : '/,. 2 f CPU: '/,. 2f 10: ’/,. 2f \n " , expTimeAve, CPUTimeAve, IOTimeAve);}

i f (a r g c == 4)1 / / Show r e s u l t s re co rd e d in db

S h o w T a b le (tab le);

CloseDBO ;}

e x i t (0) ;

}

v o id *computeMM(void *arg)

{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d ix A . C l u s t e r P r o g r a m L is t in g s 160

th re a d D a ta t d = * (th rea d D a ta *) a rg ;

f l o a t t im e S ta t s [3] ; / /te m p b u f f e r f o r s t a t s

i f (w r i t e b u f f e r (td . s o c k e t , t d . a r rd im s , s i z e o f (td .a r r d im s)) < 0)

e r r o r (" w r i t i n g a r ra y d im m ensions");

td .a r r d im s [0] = t d .a r r d im s [1] = 0;

i f (r e a d b u f f e r (td .s o c k e t , td .a r r d im s , s i z e o f (td .a r r d im s)) < 0)

e r ro r (" r e a d in g a rrd im s c o n f irm a t io n ") ;

i f (w r i t e b u f f e r (td . s o c k e t , t d .m a t r ix , td .a r r d im s [0]* td .a r rd im s [1]* s i z e o f (f l o a t)) < 0)

e r r o r (" w r i t i n g f i r s t a r ra y ") ;

i f (r e a d b u f f e r (td .s o c k e t , t d . r e s u l t , t d .a r r d im s [0]* td .a r rd im s [1]* s i z e o f (f lo a t)) < 0)

e r ro r (" r e a d in g r e s u l t a r ra y ") ;

i f (r e a d b u f f e r (td . s o c k e t , t im e S ta ts , s i z e o f (t im e S ta t s)) < 0)

e r ro r (" r e a d in g tim e s t a t s ") ;

p th re a d _ m u te x _ lo c k (td .lo c k) ; / / o b ta in lo c k f o r sh a red d a ta

* (td . t im e S ta ts) += t im e S ta ts [0] + t im e S ta ts [1] ; / / 10 in p lu s 10 ou t

* (td . t im e S ta t s + l) += t im e S ta t s [2]; / / CPU Time

p th re a d _ m u te x _ u n lo c k (td .lo c k) ; / / r e l e a s e lo ck

p r i n t f (" [’/,d] F in ish e d , CPU: '/ ,.2 f , 10: ’/,. 2 f \ n " , t d . th re a d ID , * (t d . tim e S ta ts+ 1) , * (t d . t im e S ta ts)) ;

>

i n t Com puteFFT(float * m a tr ix , i n t s i z e , f l o a t * tim e S ta ts)

in t membercount, o f f s e t = 0;

p r i n t f ("C onnecting on p o r t ’/ ,s \n " , p o r t) ;

for(m em bercount = 0; membercount<MAXMEMBERS; membercount++){

s[m embercount] = s tre a m so c k e t(0) ; /* p o r t 0 means "any p o r t" * /

se tad d r(& sin t[m em b erco u n t], cmName[membercount], a to i (p o r t)) ;

/* connect a so ck e t u s in g p o r t s p e c if i e d by th e command l in e * /

i f (con n ec t(s[m em b erco u n t], ksin t[m em b erco u n t], s iz e o f(s in t[m e m b e rc o u n t])) < 0) {

e r r o r (“co n n ec tin g stream s o c k e t") ;

e x i t (l) ;}

p r i n t f (" O ffs e t : '/,d \n", o f f s e t) ;

cmData[m embercount]. so ck e t = s[m em bercount];

cm D ata[m em bercount].m atrix = (m a trix + o f f s e t) ;

if(m em bercount != (MAXMEMBERS-1))

cmData[m embercount]. a r rd im s [0] = size/MAXMEMBERS;

e ls e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d ix A . C l u s t e r P r o g r a m L is t in g s

cm D ata[m em bercount]. a rrd im s [0] = s i z e - (size/MAXMEMBERS)* (MAXMEMBERS-1);

cmData [m em bercount]. a r rd im s [1] = s iz e ;

cmData [m em b erc o u n t] .re su lt = (m a trix + o f f s e t) ;

cm D ata[m em bercount].lock = ftlock;

cm D ata[m em bercount]. t im e S ta ts = t im e S ta ts ;

cm D ata[m em bercount].threadID = membercount;

p th r e a d _ c r e a te (fecmThread[membercount],

NULL,

computeMM,

&cmData[membercount]) ;

o f f s e t += size*(size/MAXMEMBERS);

>
for(m em bercount = 0; membercount<MAXMEMBERS; membercount++){

p th read_ jo in (cm T hread[m em bercoun t], NULL); / / w a it f o r th re a d s t o f i n i s h

c lo se(s [m em b erco u n t]) ;

}
r e tu r n 1;

}
v o id s ig n a l_ h a n d le r (in t s ig)

{
p r in tf (" A com m unication e r r o r h as o c c u r e d .\n ") ;

>

A .2.2 C lu ster M em ber

/ *

* FFT C lu s te r Member

* I n te r n e t s tre am s e rv e r .

» R eceives v e c to r s o f f l o a t s and sends FFT of them

* /

in c lu d e < s td io .h >

in c lu d e < sy s /ty p e s ,h >

S in c lu d e < sy s /so c k e t,h >

in c lu d e < n e t in e t / in .h >

S in c lu d e <netdb.h>

in c lu d e < s ig n a l.h >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d ix A . C l u s t e r P r o g r a m L is t in g s 162

in c lu d e " a r ra y o p s . h 11

S d e fin e HSGSIZ 1

v o id s ig n a l_ h a n d le r (in t) ;

c h a r *myname;

i n t msgs; / / s o c k e t d e s c r ip to r

m a in (a rg c , axgv)

c h a r *a rg v [] ;

{
s t r u c t so ck ad d r_ in from ;

i n t s , n , f ro m len , r v a l ;

i n t a r rd im s [2];

f l o a t t im e S ta ts [3] ; / /* t im e S ta t s ;

s t r u c t h o s te n t *hp;

c h a r buf[BUFSIZ];

f l o a t *m atrix ;

s t r u c t t im e v a l sta rtC om p, endComp, s t a r t I O , endIO;

s t r u c t tim ezone t z ;

f l o a t CPU;

i n t sw ap O u tS ta rt, s w a p In S ta r t , swapOutEnd, swapInEnd;

myname = a rg v [0];

i f (a rg c < 2) {

f p r i n t f (s t d e r r , "usage: Y,s p o r t \ n " , a rg v [0]) ;

e x i t (l)

s i g n a l (SIGPIPE, s ig n a l_ h a n d le r) ; / / Try to c a tc h I/O f a u l t s

t im e S ta ts [0] = t im e S ta ts [1] = t im e S ta ts [2] = 0;

s = s t r e a m s o c k e t (a to i (a r g v [1])) ;

fro m len = s i z e o f (f r o m) ;

i f (getsocknam eC s, ftfrom, S from len)) {

e r r o r (" g e t t i n g so c k e t name");

e x i t (1) ;}

p r i n t f ("S ocket h as p o r t #'/,d\n" ,n to h s (fro m , s i n . p o r t)) ;

l i s t e n (s , 5) ;

p r in tf ("R a w T ra n s fe r R a te s \n ") ;

p r i n t f ("HostCPU I E th e rn e t I D ataSet I RecIOTime I SendlOTime I CPUTime SwapOut Sw apln\n“) ;

f o r (; ;) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d ix A . C l u s t e r P r o g r a m L is t in g s 163

msgs = a c c e p t (s , 0 , 0) ; /* s t a r t a c c e p tin g co n n ec tio n s * /

i f (msgs == -1)

e r r o r (" a c c e p t11) ;

getSw aps (fcsw apO utS tart, f ts v a p In S ta r t) ;

b z e ro (a r rd im s , s iz e o f (a r r d im s)) ;

i f (re a d b u ffe r(m sg s , a rrd im s , s iz e o f (a r r d im s)) < 0){

p r i n t f (" E r r o r re a d in g a r rd im s \n ") ;

g o to end ;}

i f (w r i te b u f fe r (m s g s , a rrd im s , s iz e o f (a r r d im s)) < 0){

p r i n t f (" E r r o r w r i t in g a r rd im s \n ") ;

g o to end ;}

m a tr ix = (f l o a t *)m a llo c (a r rd im s[0] * a r rd im s [1]* s i z e o f (f l o a t)) ;

b z e ro (m a tr ix , s i z e o f (m a t r ix)) ;

g e ttim e o fd a y (fe s ta r tlO , & tz) ;

i f (re a d b u ffe r(m sg s , m a tr ix , a r rd im s [0]* a rrd im s [1]* s i z e o f (f l o a t)) < 0){

p r i n t f (" E r r o r re a d in g m a t r ix \n ") ;

g o to end ;}

g e ttim eo fd ay (feen d lO , & tz) ;

t im e S ta t s [0] = E x p T im e(s ta rt10, en d IO);

g e ttim eofday(& startC om p, Sctz);

FFT_H atrix (m a tr ix , a rrd im s [0] , a rrd im s [1]) ;

gettim eofday(ftendC om p, & tz) ;

t im e S ta ts [2] = ExpTim e(startCom p, endComp);

g e tt im e o fd a y (& s ta r tI0 , & tz) ;

i f (w r ite b u f f e r (m sgs, m a tr ix , a rrd im s [0] *a rrd im s [1] * s iz e o f (f l o a t)) < OH

p r i n t f (" E r ro r w r i t in g r e s u l t A n ") ;

g o to end ;}

g e ttim eo fd ay (ften d lO , & tz) ;

t im e S ta t s [1] = E x p T im e(sta rtIO , endIO);

i f (w r ite b u ffe r (m s g s , t im e S ta ts , s iz e o f (t im e S ta t s)) < 0)

p r i n t f (" E r r o r w r i t in g tim e s t a t s \ n “) ;

end:

getCPUInfo(6CPU);

getSwaps(feswapOutEnd, feswapInEnd);

p r i n t f (*y,f 100 ‘/,d '/,f '/,f '/,f '/,d '/,d\n" , CPU, a rrd im s [0]* arrd im s [1] * s iz e o f (f l o a t) . t im e S ta ts [0] , t im e S ta ts [1] ,

sw apO utEnd-sw apO utStart, sw apInE nd-S w apInS tart);

f r e e (m a t r ix) ;

}

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d ix A . C l u s t e r P r o g r a m L is t in g s 164

v o id s ig n a l .h a n d le r (in t s ig)

p r i n t f (" \ n I / 0 e r r o r h as o c cu rre d (Broken p i p e) .\n A ttem p tin g to resume norm al o p e r a t io n . \ n ") ;

sig n a l(S IG P IP E , s ig n a l .h a n d le r) ;

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

[1] Marha L. A be ll and James P. Braselton. Differential Equations with
Maple V. Academic Press, 2 edition, 2000.

[2] V ikram S. Adve. Analyzing the behavior and performance of parallel
programs. Ph.D. Thesis, University of Wisconsin-Madison, 1993.

[3] Ahmad Afsadi and N ikitas J. Dimopoulos. Efficient Communication
Using Message Prediction for Cluster of Multiprocessors. In
Babak Falsafi and M ario Lam ia, editors, Network-Based Parallel Com
puting, volume 1797 of Lecture Notes In Computer Science. Springer,
2000 .

[4] Selim G. A kl. Parallel computation: models and methods. Prentice-Hall,
Inc., 1997.

[5] A .M . A lk ind i, D.J. Kerbyson, and G.R. Nudd. Rim-Time Optimiza
tion Using Dynamic Performance Prediction. In Roy W ilhams
Marian Bubak, Hamideh Afsarmanesh and Bob Hertzberger, editors,
High Performance Computing and Networking, volume 1823 of Lecture
Notes In Computer Science. Springer, 2000.

[6] George S. Almasi and A llan G ottlieb. Highly Parallel Computing. The
Benjam in/Cummings Publishing Company Inc., 2 edition, 1994.

[7] Gene Amdahl. Validity o f the Single Processor Approach to
Achieving Large Scale Computing Capabilities. In Group, edi
to r, A F IP S ’67. AFIPS, 1967.

[8] Frangoisce Andre, Christine M orin, and Maria-Teresa Segarra. Mech
anisms for Global Processor and Memory Management on a
NoW. In Peter Sloot, M arian Bubak, and Bob Hertzberger, editors,
High-Performance Computing and Networking, volume 1401 of Lecture
Notes In Computer Science. Springer, A p ril 1998.

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

BIBLIOGRAPHY 166

[9] Cosimo Anglano. P red icting P a ra lle l A p p lic a tio n s P e rfo r
mance on Non-dedicated Cluster Platforms. Internet, 1998.
http: / / citeseer. nj. nec. com/anglano 9 8predicting. html.

[10] Kubota Atushi, Tatsumi Shogo, Tanaka Toshihiko, and M ori Shin-ichiro.
A Technique to Eliminate Redundant Inter-Process Commu
nications on Parallelizing Compiler TINPAR. In J. Harmanis
G. Goos and J. van Leeuwen, editors, High Performance Computing,
ISHPC’97, Lecture Notes In Computer Science. Springer, 1997.

[11] M atthias Brune Axel Keller and Alexander Reinefeld. Resource Man
agement for High-Performance PC Clusters. In Alfons Hoek-
stra Peter Sloot, M arian Bubak and Bob Hertzberger, editors, High-
Performance Computing and Networking, volume 1593 o f Lecture Notes
In Computer Science. Springer, 1999.

[12] F. Baiardi, P. Becuzzi, P. M ori, and M. Paoli. Load Balancing and Lo
cality in Hierarchical N-body Algorithms on Distributed Mem
ory Architecture. In Peter Sloot, M arian Bubak, and Bob Hertzberger,
editors, High-Performance Computing and Networking, volume 1401 of
Lecture Notes In Computer Science. Springer, A p ril 1998.

[13] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K . Weeratunga.
The NAS Parallel Benchmarks. The International Journal of Su
percomputer Applications, 5(3):63-73, Fall 1991.

[14] M ark Baker and Rajkumar Buyya. Cluster Computing at a Glance.
In Buyya Rajkum ar, editor, High Performance Cluster Computing, vol
ume 1, chapter 1, pages 3-47. Prentice H all Inc, 1999.

[15] M anjunath Bangalore and Anand Sivasubramaniam. Remote Subpag
ing A cross a Fast N e tw o rk . In Dhabaleswar K . Panda and Craig B.
Stunkel, editors, Network-Based Parallel Computing, volume 1362 of Lec
ture Notes In Computer Science. Springer, February 1998.

[16] P ierrick Beaugendre and Thierry Priol. A C lie n t/ S erver A p p roa ch
for HPC A p p lic a tio n s w ith in a N e tw o rk in g E n v iro n m e n t. In
Peter Sloot, M arian Bubak, and Bob Hertzberger, editors, High-
Performance Computing and Networking, volume 1401 of Lecture Notes
In Computer Science. Springer, A p ril 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

BIBLIOGRAPHY 167

[17] J. Blasiak and W. Dzwinel. Visual Clustering Multidimensional
and Large Data Sets Using Parallel Environments. In Peter
Sloot, M arian Bubak, and Bob Hertzberger, editors, High-Performance
Computing and Networking, volume 1401 of Lecture Notes In Computer
Science. Springer, A p ril 1998.

[18] Mathias Brune, Jorn Gehring, and Alexander Reinefeld. A Lightweight
C om m u n ica tio n Interface for Parallel Programming Environ
ments. In Bob Hetzberger and Peter Sloot, editors, High-Performance
Computing and Networking, HPCN’97, volume 1225 of Lecture Notes In
Computer Science. Springer, 1997.

[19] M arian Bubak, W lodzim ierz Funika, and Jacek Moscihski. Perfor
mance Analysis Environment for Parallel Applications on N et
worked Workstations. In Bob Hetzberger and Peter Sloot, editors,
High-Performance Computing and Networking, HPCN’97, volume 1225
o f Lecture Notes In Computer Science. Springer, 1997.

[20] Robin Burk, M artin B ligh, and Thomas Lee. TCP/IP Blueprints. Sams
Publishing, 1 edition, 1997.

[21] Duncan K.G . Campbell. A Survey of Models of Parallel Compu
tation.

[22] Eddy Caron, O livier Cozette, Dominique Lazure, and G il U tard. Vir
tual Memory Management in Data Parallel Applications. In A l-
fons Hoekstra Peter Sloot, M arian Bubak and Bob Hertzberger, editors,
High-Performance Computing and Networking, volume 1593 of Lecture
Notes In Computer Science. Springer, 1999.

[23] A lan Chalmers and Jonathan Tidmus. Practical Parallel Processing.
International Thomson Computer Press, 1996.

[24] Steven C. Chapra and Raymond P. Canale. Numerical Methods For
Engineers. M cGraw-Hill Book Company, 1988.

[25] Helen Chen and Pete W yckoff. S im u la tio n S tud ies o f G ig a b ity E th
e rn e t Versus M y rin e t U s in g R ea l A p p lic a tio n C ores. In Babak
Falsafi and M ario Lauria, editors, Network-Based Parallel Computing,
volume 1797 of Lecture Notes In Computer Science. Springer, 2000.

[26] Hsin-Chu Chen, A lv in Lim , and Nazir A. Warsi. M u ltile v e l
M aste r-S lave P a ra lle l P ro g ra m m in g M ode ls . In Joxan Jafar and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

B IB L IO G R A P H Y 168

Roland H.C. Yap, editors, Concurrency and Parallelism, Programming,
Networking and Security, volume 1179 o f Lecture Notes In Computer
Science. Springer, December 1996.

[27] W ai-Kai Chen. The Circuits and Filters Handbook. CRC Press Inc.,
1995.

[28] Eleanor Chu and A lan George. Inside the FFT black box. Serial and
Parallel Fast Fourier Transform Algorithms. CRC Press, 2000.

[29] M . Clement and M. Quinn. Analytical Performance
Prediction on Multicomputers. Internet, May 1993.
http: / / citeseer. nj. nec. com/clement94 analytical, html.

[30] A lbert Cohen. Parallelization via Constrained Storage Map
ping Optimization. In A Fukuda C Polychronopoulos, J. Kazuki and
S Tom ita, editors, High Performance Computing, ISHPC’99, Lecture
Notes In Computer Science. Springer, 1999.

[31] David J. Comer. Computer Analysis of Circuits. In ternational Textbook
Company, 1971.

[32] George Coulouris, Jean Dollim ore, and T im Kinderberg. Distributed
Systems Concepts and Design. Addison-Wesley, 4 edition, 1996.

[33] M ichel Courson, A lan M ink, Guillaume Margais, and Benjam in Tra
verse. An Automated Benchmarking Toolset. In Roy W illiam s
M arian Bubak, Hamideh Afsarmanesh and Bob Hertzberger, editors,
High Performance Computing and Networking, volume 1823 of Lecture
Notes In Computer Science. Springer, 2000.

[34] Phyllis E. Crandal and Michael J. Quinn. Block data decomposition
for data parallel programming on a heterogeneous workstation
network. In Proceedings of the Second International Symposium on
High Performance Distributed Computing, July 1993.

[35] Phyllis E. Crandall, E ranti V. Sumithasri, Johann Leichtl, and M ark A.
Clement. Tow ard M assive D u a l-L e ve l P a ra lle lism in C lu s te r
Computing. Internet, http ://citeseer.nj.nec.com /239483.htm l.

[36] Paolo Cremonesi, Claudio Gennaro, and Roberto Marega. 1 /O P e rfo r
mance in H y b r id M IM D + S IM D Machines. In Peter Sloot, M ar
ian Bubak, and Bob Hertzberger, editors, High-Performance Computing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://citeseer.nj.nec.com/239483.html

www.manaraa.com

BIBLIOGRAPHY 169

and Networking, volume 1401 of Lecture Notes In Computer Science.
Springer, A p ril 1998.

[37] D. Culler, R. Karp, D. Patterson, A . Sahay, K . Schauser, E. San
tos, R. Subramonian, and T. von Eicken. LogP: Towards a re
alistic model of parallel computation. Internet, May 1993.
http ://c ites eer. nj. nec. com /cu lle r 93logp.html.

[38] David E. Culler and Jaswinder Pal Singh. Parallel Computer Architec
ture. Morgan Kaufmann Publishers, Inc., 1999.

[39] Hans de Goede. Root over nfs clients & server Howto. Internet,
March 1999. http ://w w w . linux. org/docs/ldp/howto/Diskless-root-NFS-
HOWTO.html.

[40] Frank Dehne and Siang W . Song. Randomized Parallel List Rank
ing for Distributed Memory M ultiprocessors. In Joxan Jafar and
Roland H.C. Yap, editors, Concurrency and Parallelism, Programming,
Networking and Security, volume 1179 of Lecture Notes In Computer
Science. Springer, December 1996.

[41] Jos Derksen and Harry Van den Akker. Parallel Simulation o f Turbu
lent Fluid Flow in a Mixing Tank. In Peter Sloot, M arian Bubak,
and Bob Hertzberger, editors, High-Performance Computing and Net
working, volume 1401 of Lecture Notes In Computer Science. Springer,
A p ril 1998.

[42] C.H.Q Ding, P.M. Lyster, J.W . Larson, J. Guo, and A. da Silva. At
mospheric Data Assimilation on Distributed-M emory Parallel
Supercomputers. In Peter Sloot, M arian Bubak, and Bob Hertzberger,
editors, High-Performance Computing and Networking, volume 1401 of
Lecture Notes In Computer Science. Springer, A p ril 1998.

[43] Kevin Dowd. High Performance Computing. O’R eilly & Associates, Inc.,
firs t edition edition, 1993.

[44] D.E. Dudgeon and R.M . Mersereau. Multidimenisional D igita l Signal
Processing. Prentice-Hall Inc., 1984.

[45] Tzilla Erald, Baoling Sheen, and Novak V. Nastasic. C H E S S B OA R D :
A S ynergy o f O b je c t O rie n te d C o n cu rre n t P ro g ra m m in g and
P ro g ra m Layering . In Joxan Jafar and Roland H.C. Yap, editors,
Concurrency and Parallelism, Programming, Networking and Security,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://cites
http://www

www.manaraa.com

BIBLIOGRAPHY 170

volume 1179 of Lecture Notes In Computer Science. Springer, December
1996.

[46] E rtel. On the Definition of Speedup. In PARLE: Parallel Architec
tures and Languages Europe. LNCS, Springer-Verlag, 1994.

[47] D ror G. Feitelson. Scheduling Parallel Jobs on Clusters. In Buyya
Rajkum ar, editor, High Performance Cluster Computing, volume 1,
chapter 21, pages 519-533. Prentice H all Inc, 1999.

[48] A . Flores and J.M . Garcia. Improving the Performance of Scientific
Parallel Applications in a Cluster of Workstations. In E rik Elm-
ro th Bo Kagstrom, Jack Dongara and Jerzy Wasniewski, editors, Applied
Parallel Computing, volume 1541 of Lecture Notes In Computer Science.
Springer, 1998.

[49] G iuliana Fogaccia. Parallel Implementation of a Lattice Boltzman
Algorithm for the Electrostatic Plasma Turbulence. In Peter
Sloot, M arian Bubak, and Bob Hertzberger, editors, High-Performance
Computing and Networking, volume 1401 of Lecture Notes In Computer
Science. Springer, A p ril 1998.

[50] Gerald B. Folland. Fourier Analysis and Its Applications. Brooks/Cole
Publishing Company, 1992.

[51] B e rtil Fo llio t and Pierre Sens. Load Sharing and Fault Tolerance
Manager. In Buyya Rajkumar, editor, High Performance Cluster Com
puting, volume 1, chapter 22, pages 535-552. Prentice H all Inc, 1999.

[52] Robert Frank and Helmar Burkhart. Application Support by Soft
ware Reuse: The ALWAN Approach. In Bob Hetzberger and Peter
Sloot, editors, High-Performance Computing and Networking, H PCN’97,
volume 1225 of Lecture Notes In Computer Science. Springer, 1997.

[53] T .L . Freeman and C. Phillips. Parallel Numerical Algorithms. Prentice
Hall, 1992.

[54] Antonio Augusto Frohlich, Gilles Pokam Tientcheu, and Wolfgang
Schroder-Preikschat. EPOS and Myrinet: Effective Communi
cation Support for Parallel Applications Running on Clus
ters o f Commodity Workstations. In Roy W illiam s M arian Bubak,
Hamideh Afsarmanesh and Bob Hertzberger, editors, High Performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

BIBLIOGRAPHY 171

Computing and Networking, volume 1823 of Lecture Notes In Computer
Science. Springer, 2000.

[55] Xiadong Fu, Hua Wang, and V ijay Karamcheti. Transparent Network
Connectivity in Dynamic Cluster Environments. In Babak Falsafi
and M ario Lauria, editors, Network-Based Parallel Computing, volume
1797 of Lecture Notes In Computer Science. Springer, 2000.

[56] John G ilbert and Donald Kershaw. Large-Scale M atrix Problems and the
Numerical Solution of Partia l Differential Equantions. O xford University
Press, 1994.

[57] Frank R. Giordano and Maurice D. Weir. Differential Equations a Mod
eling Approach. Addison-Wesley Publishing Company, Inc., 1991.

[58] R. Grindley, T . Abdelrahman, S. Brown, S. Caranci, D. DeVries,
B. Gamsa, A. Grbic, M. Gusat, R. Ho, and P. McHardy. The NU-
MAchine multiprocessor. Department of E lectrical and Computer Engi
neering, U niversity of Toronto, 2000.

[59] John L. Gustafson. Reevaluating Am
dahl’s Law. Internet, August 2000.
http://www.scl. ameslab.gov/Publications/AmdahlsLaw/Amdahls.html.

[60] Issam Hamid and Ferhat Khendek. A Dynamic Evolution for
the Specifications of Distributed Systems. In Joxan Jafar and
Roland H.C. Yap, editors, Concurrency and Parallelism, Programming,
Networking and Security, volume 1179 of Lecture Notes In Computer
Science. Springer, December 1996.

[61] K .A . Havick, D .A. Grove, P.D. Coddington, and M .A. Buntine. A B e
owulf Cluster for Computational Chemistry. In Roy W illiam s
M arian Bubak, Hamideh Afsarmanesh and Bob Hertzberger, editors,
High Performance Computing and Networking, volume 1823 of Lecture
Notes In Computer Science. Springer, 2000.

[62] K .A . Hawick, H .A. James, C.J. Patten, and F.A. Vaughan. DISC-
World: A Distributed High Performance Computing Environ
ment. In Peter Sloot, M arian Bubak, and Bob Hertzberger, editors,
High-Performance Computing and Networking, volume 1401 of Lecture
Notes In Computer Science. Springer, A p ril 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.scl

www.manaraa.com

BIBLIOGRAPHY 172

[63] W illia m H. Hayt and Jack E. Kemmerly. Engineering C ircuit Analysis.
M cG raw -H ill, Inc., 1993.

[64] Bruce Hendrickson and Tamara G. Kolda. Partitioning Sparse Rec
tangular Matrices for Parallel Computations of Ax and ATv*.
In E rik E lm roth Bo Kagstrom, Jack Dongara and Jerzy Wasniewski,
editors, Applied Parallel Computing, volume 1541 of Lecture Notes In
Computer Science. Springer, 1998.

[65] M . Hobs and A. Goscinski. Rem ote and Concurent Process Dupli
cation for SPM D Based Parallel Processing on COWs. In A l-
fons Hoekstra Peter Sloot, M arian Bubak and Bob Hertzberger, editors,
High-Performance Computing and Networking, volume 1593 o f Lecture
Notes In Computer Science. Springer, 1999.

[66] Nayeem Islam. Dynamic Partitioning in Dier-
ent Distributed-M emory Environments. Internet.
h ttp :// cites eer. nj. nec. com/86642. html.

[67] Thomas K. Jewell. Computer Applications fo r Engineers. John W iley
& Sons, Inc., 1991.

[68] Ersin Cem Kaletas, A .W . van Halderen, Frank van der Linden, and
Hamideh Afsarmanesh. Evaluation of RCube-Based Switch Us
ing a Real World Application. In Roy W illiam s M arian Bubak,
Hamideh Afsarmanesh and Bob Hertzberger, editors, High Performance
Computing and Networking, volume 1823 of Lecture Notes In Computer
Science. Springer, 2000.

[69] M . Kandemir, A. Choudhary, and J. Ramanujam. Restructur
ing I/O-Intensive Computations for Locality. In Alfons Hoek
stra Peter Sloot, M arian Bubak and Bob Hertzberger, editors, High-
Performance Computing and Networking, volume 1593 o f Lecture Notes
In Computer Science. Springer, 1999.

[70] Richard M. Karp. P a ra lle l C o m b in a to ria l C o m p u tin g . In J ill P.
Mesirov, editor, High Performance Cluster Computing, volume 1, chap
ter 15, pages 221-238. C apital C ity Press, 1991.

[71] M .A. K artaw idja ja and A.G. Hoekstra. M e m o ry E ffic ie n cy o f P a r
a lle l P rog ram s and M e m o ry B ounded Speedup. In Peter Sloot,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://cites

www.manaraa.com

BIBLIOGRAPHY 173

M arian Bubak, and Bob Hertzberger, editors, High-Performance Com
puting and Networking, volume 1401 o f Lecture Notes In Computer Sci
ence. Springer, A p ril 1998.

[72] JunSeong K im and David J. L ilja . Characterization of Communi
cation Patterns in Message-Passing Parallel Scientific Applica
tion Programs. In Dhabaleswar K. Panda and Craig B. Stunkel, edi
tors, Network-Based Parallel Computing, volume 1362 of Lecture Notes
In Computer Science. Springer, February 1998.

[73] Kim m o Koski, Jussi Heikonen, Jari M iettinen, and Jussi Rahola. Re
sults of the One-year Cluster Pilot Project. In Roy W illiam s M ar
ian Bubak, Hamideh Afsarmanesh and Bob Hertzberger, editors, High
Performance Computing and Networking, volume 1823 of Lecture Notes
In Computer Science. Springer, 2000.

[74] N icolai Langfeldt. NFS Howto. Internet, October 1999.
http: / / www. linux. org/docs/Idp/howto/NFS-HO WTO. html.

[75] Pascale Launay and Jean-Louis Pazat. A Framework for Parallel
P r o g r a m m i n g i n Java. In Peter Sloot, M arian Bubak, and Bob
Hertzberger, editors, High-Performance Computing and Networking, vol
ume 1401 of Lecture Notes In Computer Science. Springer, A p ril 1998.

[76] Xavier Leroy. Linux Threads. Internet, 1997.
http ://pau illac.in r ia . f r / xleroy/linuxthreads/index.html.

[77] Th. L ippert, N. Petkov, and K. Schilling. BLAS-3 for the Quadrics
Parallel Computer. In Bob Hetzberger and Peter Sloot, editors, High-
Performance Computing and Networking, H PCN ’97, volume 1225 of Lec
ture Notes In Computer Science. Springer, 1997.

[78] Th. L ippert, K . Schilling, F. Toschi, S. Trentmann, and R. Tripiccione.
Transpose Algorithm for FFT on APE/Quandrics. In Peter Sloot,
M arian Bubak, and Bob Hertzberger, editors, High-Performance Com
puting and Networking, volume 1401 of Lecture Notes In Computer Sci
ence. Springer, A p ril 1998.

[79] Lennart Ljung and Torkel Glad. Modeling of Dynamic Systems. Prentice
Hall, 1994.

[80] Paul A. Lynn and Wolfgang Fuerst. Introductory D igita l Processing with
Computer Applications. John W iley and Sons LTD ., November 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://pauillac.inria.fr/

www.manaraa.com

BIBLIOGRAPHY 174

[81] J.M . MacLaren and J.M . Bull. Lessons Learned when Comparing
Shared Memory and Message Passing Codes on Three Mod
ern Parallel Architectures. In Peter Sloot, M arian Bubak, and Bob
Hertzberger, editors, High-Performance Computing and Networking, vol
ume 1401 of Lecture Notes In Computer Science. Springer, A p ril 1998.

[82] Qusay H. Mahmoud. The Web as a Global Computing Platform.
In Alfons Hoekstra Peter Sloot, M arian Bubak and Bob Hertzberger,
editors, High-Performance Computing and Networking, volume 1593 of
Lecture Notes In Computer Science. Springer, 1999.

[83] Ursula Maier and Greg Stellner. Distributed Resource Manage
ment for Parallel Applications in Networks of Workstations. In
Bob Hetzberger and Peter Sloot, editors, High-Performance Computing
and Networking, H PCN’97, volume 1225 of Lecture Notes In Computer
Science. Springer, 1997.

[84] Ofer Maor. NFS-Root-Client Mini-HOWTO. Internet, Febru
ary 1999. http://www.linux.org/docs/ldp/howto/m ini/NFS-Root-Client-
m in i-H OW T O/index. html.

[85] Evangelos P. Markatos, Manolis G.H. Katevenis, and Penny Vatsolaki.
The Remote Enqueue Operation on Networks of Workstations.
In Dhabaleswar K. Panda and Craig B. Stunkel, editors, Network-Based
Parallel Computing, volume 1362 of Lecture Notes In Computer Science.
Springer, February 1998.

[86] James M artin and Kathleen Kavanagh Chapman. Local Area Networks.
Prentice-Hall, 1989.

[87] Jeremy M artin and Alex W ilson. A Visual BSP Programming En
vironment for Distributed Computing. In Babak Falsafi and Mario
Lauria, editors, Network-Based Parallel Computing, volume 1797 of Lec
ture Notes In Computer Science. Springer, 2000.

[88] Norman M atloff. Analysis o f a Programmed Backoff M ethod fo r
Parallel Processing on Ehternets. In Dhabaleswar K . Panda and
Craig B. Stunkel, editors, Network-Based Parallel Computing, volume
1362 o f Lecture Notes In Computer Science. Springer, February 1998.

[89] M otohiko Matsuda, Yoshiko Tanaka, Kazuto Kubota, and M itsuhisa
Sato. Network Interface Active Messages for Low Over-

with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.linux.org/docs/ldp/howto/mini/NFS-Root-Client-

www.manaraa.com

BIBLIOGRAPHY 175

head Communication on SMP PC Clusters. In Alfons Hoek
stra Peter Sloot, Marian Bubak and Bob Hertzberger, editors, High-
Performance Computing and Networking, volume 1593 of Lecture Notes
In Computer Science. Springer, 1999.

[90] Ron Mayer. Performance and accuracy benchmarking for
F F T . Internet, 1993. http://www.geocities.com/ResearchTriangle/-
8869/fftsummary. html.

[91] A rnold M eijster and Fred Wubs. Towards an Implementation of
a M ultilevel ILU Preconditioner on Shared-Memory Comput
ers. In Roy W illiam s M arian Bubak, Hamideh Afsarmanesh and Bob
Hertzberger, editors, High Performance Computing and Networking, vol
ume 1823 of Lecture Notes In Computer Science. Springer, 2000.

[92] J. Meira. Modeling Performance of Parallel Programs. Internet,
June 1995. http://citeseer.nj.nec.com/meira95modeling.html.

[93] C. Mendes. Performance Scalability Prediction on Multicomputers.
Ph.D. Thesis, University o f Illino is at Urbana-Champaign, 1997.

[94] David Mentre. Linux SMP-Howto. Internet, January 2000.
http://www.linux.org/docs/ldp/howto/SMP-HOW TO.htm l.

[95] Chan Wai M ing, Samuel Chanson, and M ounir Hamdi. The Design
of a Parallel P ro g ra m m in g System for a Network of Worksta
tions: An Object-Oriented Approach. In Dhabaleswar K. Panda
and Craig B. Stunkel, editors, Network-Based Parallel Computing, vol
ume 1362 of Lecture Notes In Computer Science. Springer, February
1998.

[96] Jagdish J. M odi. Parallel Algorithms and M atrix Computation. Oxford
U niversity Press, 1988.

[97] J. Mohan. Performance of Parallel Programs: Model and Analyses.
Ph.D. Thesis, Carnegie Mellon University, 1984.

[98] F. Munz, T. Stephan, U. Maier, T . Ludwig, A. Bode, S. Ziegler,
S. Nekolla, P. Bartenstein, and M. Schwaiger. Improved Functional
Imaging through Network Based Parallel Processing. In Dha
baleswar K. Panda and Craig B. Stunkel, editors, Network-Based Par
allel Computing, volume 1362 of Lecture Notes In Computer Science.
Springer, February 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.geocities.com/ResearchTriangle/-
http://citeseer.nj.nec.com/meira95modeling.html
http://www.linux.org/docs/ldp/howto/SMP-HOWTO.html

www.manaraa.com

BIBLIOGRAPHY 176

[99] Bhavana Nagendra and Lars Rzymianowicz. H ig h Speed Networks.
In Buyya Rajkum ar, editor, High Performance Cluster Computing, vol
ume 1, chapter 9, pages 204-245. Prentice H all Inc, 1999.

[100] H ironori Nakajo, Hidekazu Tanaka, Yoshinori Nakanishi, Masaki Ko-
hata, and Yukio Kaneda. Distributed Shared-Memory for a Work
station Cluster with a H igh Speed Serial Interface. In Peter
Sloot, M arian Bubak, and Bob Hertzberger, editors, High-Performance
Computing and Networking, volume 1401 of Lecture Notes In Computer
Science. Springer, A p ril 1998.

[101] Shimizu Naohiko and Watanabe Takehiko. High Peformance Parallel
FFT on Distributed Memory Parallel Computers. In J. Harmanis
G. Goos and J. van Leeuwen, editors, High Performance Computing,
ISH PC ’97, Lecture Notes In Computer Science. Springer, 1997.

[102] T . D. Nguyen, R. Vaswani, and J. Zahorjan. M aximizing Speedup
Through Self-Tuning Processor Allocation. Technical Report TR-
95-09-02, 1995.

[103] Jaechun No, Jesus Carretero, and A lok Choudhary. High Performance
Parallel I/O Schemes for Irregular Applications on Clusters of
Workstations. In Alfons Hoekstra Peter Sloot, M arian Bubak and
Bob Hertzberger, editors, High-Performance Computing and Network
ing, volume 1593 of Lecture Notes In Computer Science. Springer, 1999.

[104] Masato Oguchi and Masaru Kitsuregawa. Dynamic Rem ote Memory
Acquiring for Parallel Data Mining on PC Cluster: Preliminary
Performance Results. In Alfons Hoekstra Peter Sloot, Marian Bubak
and Bob Hertzberger, editors, High-Performance Computing and Net
working, volume 1593 of Lecture Notes In Computer Science. Springer,
1999.

[105] Masato Oguchi, Takahiko Shintani, Takayuki Tamura, and Masaru K it
suregawa. C h a ra c te ris tics o f a P a ra lle l D a ta M in in g A p p lic a tio n
Im p le m e n te d on an A T M C onnected P C C lu s te r. In Bob Het
zberger and Peter Sloot, editors, High-Performance Computing and Net
working, HPCN’97, volume 1225 of Lecture Notes In Computer Science.
Springer, 1997.

[106] H itoshi O i and N. Ranganathan. U tiliz a tio n o f Cache A rea in O n-
Chip M u ltip ro ce sso r. In A Fukuda C Polychxonopoulos, J. Kazuki

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

BIBLIOGRAPHY 177

and S Tom ita, editors, High Performance Computing, IS HP C ’99, Lec
ture Notes In Computer Science. Springer, 1999.

[107] H. Oksiizoglu and A .G .M van Hees. A Barotropic Global Ocean
M odel and Its Parallel Implementation on Unstructured Grids.
In Peter Sloot, M arian Bubak, and Bob Hertzberger, editors, High-
Performance Computing and Networking, volume 1401 of Lecture Notes
In Computer Science. Springer, A p ril 1998.

[108] K unth Omang. Performance of a Cluster of PCI Based Ultra-
Sparc Workstations Interconnected with SCI. In Dhabaleswar K.
Panda and Craig B. Stunkel, editors, Network-Based Parallel Comput
ing, volume 1362 of Lecture Notes In Computer Science. Springer, Feb
ruary 1998.

[109] Stan Openshaw and Ian Turton. High-Performance Computing and the
A rt of Parallel Programming. Routledge, 2000.

[110] P. Palazzari, P.D. Atanasio, and F. Ragusini. Simulation of
Pattch A rra y Antennas through the Implementation of Finite-
Difference Time-Domain (FD-TD) Algorithm on Distributed
Memory M assively Parallel Systems. In Peter Sloot, M arian Bubak,
and Bob Hertzberger, editors, High-Performance Computing and Net
working, volume 1401 of Lecture Notes In Computer Science. Springer,
A p ril 1998.

[111] David A. Patterson and John L. Hennessy. Computer Architecture A
Quantitative Approach. Morgan Kaufmann Publishers Inc., second edi
tion, 1996.

[112] M iguel Paz and V icto r Gulias. Cluster Setup and its Administra
tion. In Buyya Rajkumar, editor, High Performance Cluster Computing,
volume 1, chapter 2, pages 48-67. Prentice H all Inc, 1999.

[113] A.J.H. Peddemors and L.O. Hertzberger. A h ig h P e rfo rm ance D is
tr ib u te d D atabase S ystrem fo r E nhanced In te rn e t Services.
In Peter Sloot, M arian Bubak, and Bob Hertzberger, editors, High-
Performance Computing and Networking, volume 1401 of Lecture Notes
In Computer Science. Springer, A p ril 1998.

[114] Michael J. Quinn. Designing Efficient Algorithms For Parallel Comput
ers. M cG raw -H ill Inc., 2 edition, 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

BIBLIOGRAPHY 178

[115] Gunther Rackl, F ilippo de Stefani, Francois Heran, Anotonello
Pasquarelli, and Thomas Ludwig. Airport Simulation Using
C O R B A and DIS. In Alfons Hoekstra Peter Sloot, M arian Bubak
and Bob Hertzberger, editors, High-Performance Computing and Net
working, volume 1593 o f Lecture Notes In Computer Science. Springer,
1999.

[116] Simon Ramo, John R. W hinnery, and Theodore Van Duzer. Fields and
Waves in Communication Electronics. John W iley & Sons, 1993.

[117] Myoung An Richard Tolim eri and Chao Lu. Mathematics of M ultid i
mensional Fourier Transform Algorithms. Springer, 2 edition, 1997.

[118] Beth Richardson. Parallel Performance Analysis. Internet, Sep
tember 1998. http ://w w w . ncsa. uiuc. edu/SCD/HPCTraining/materials/
html/parperf/sldOOl. htm.

[119] M ark Russinovich. Inside Microsoft Cluster Server. Windows N T
Magazine, pages 57-62, February 1998.

[120] Volker Sander, Dietm ar Erw in, and Valentina Huber. High-
Performance Computer Management Based on Java. In Peter
Sloot, M arian Bubak, and Bob Hertzberger, editors, High-Performance
Computing and Networking, volume 1401 of Lecture Notes In Computer
Science. Springer, A p ril 1998.

[121] J. Santoso, G.D. van Albada, B .A .A . Naziel, and P.M .A. Sloot.
Skel-BSP: Performance Portability for Skeletal Programming.
In Roy W illiam s M arian Bubak, Hamideh Afsarmanesh and Bob
Hertzberger, editors, High Performance Computing and Networking, vol
ume 1823 of Lecture Notes In Computer Science. Springer, 2000.

[122] Daniel Savarese and Thomas Sterling. Beowulf. In Buyya Rajkumar,
editor, High Performance Cluster Computing, volume 1, chapter 26,
pages 625-645. Prentice H all Inc, 1999.

[123] J. Schopf. Structural prediction models for high-
performance distributed applications. Internet, 1997.
http: //citeseer. nj. nec. com/schopf97structural. html.

[124] M artin Schulz. SISCI-Pthreads SMP-like Programming on an
S C I-c lu s te r. In Peter Sloot, M arian Bubak, and Bob Hertzberger,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www

www.manaraa.com

BIBLIOGRAPHY 179

editors, High-Performance Computing and Networking, volume 1401 of
Lecture Notes In Computer Science. Springer, A p ril 1998.

[125] P.A. Smeulders. A Reconfigurable Multicomputer System: Implementa
tion and Performance. Ph.D. Thesis, U niversity of Western Ontario,
1992.

[126] E. Sm irni and E. Rosti. M odeling speedup of SPM D applications
on the Intel Paragon. Lecture Notes in Computer Science, 919:94-??,
1995.

[127] Jorg Stadler. Industrial Applications of High Performance Com
puting The Experiences from HWW. In Peter Sloot, M arian
Bubak, and Bob Hertzberger, editors, High-Performance Computing
and Networking, volume 1401 o f Lecture Notes In Computer Science.
Springer, A p ril 1998.

[128] W illiam Stallings. Data and Computer Communications. Macm illan
Publishing Company, 4 edition, 1994.

[129] Nenad Stankovic and Zhang Kang. A Parallel Programming Envi
ronment for Networks. In A Fukuda C Polychronopoulos, J. Kazuki
and S Tom ita, editors, High Performance Computing, IS HP C ’99, Lec
ture Notes In Computer Science. Springer, 1999.

[130] Frank L. Stasa. Applied F in ite Element Analysis fo r Engineers. CBS
College Publishing, 1985.

[131] P. Strating. Parallel Efficiency of a Bundary Integral Equation
M ethod for Nonlinear Water Waves. In Bob Hetzberger and Peter
Sloot, editors, High-Performance Computing and Networking, H PCN’97,
volume 1225 of Lecture Notes In Computer Science. Springer, 1997.

[132] N anri Takeshi, Sato H iroyuki, and Shimasaki Masaaki. Cost Estima
tion of Coherence Protocols of Software Managed Cache on
Distributed Shared Memory System. In J. Harmanis G. Goos and
J. van Leeuwen, editors, High Performance Computing, ISH PC ’97, Lec
ture Notes In Computer Science. Springer, 1997.

[133] David Taniar. A H ig h P erfo rm ance O b je c t-O rie n te d D is tr ib u te d
P a ra lle l D atabase A rc h ite c tu re . In Peter Sloot, M arian Bubak, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

BIBLIOGRAPHY 180

Bob Hertzberger, editors, High-Performance Computing and Network
ing, volume 1401 of Lecture Notes In Computer Science. Springer, A p ril
1998.

[134] Damian T ry bus. Analysis of a high performance workstation. M.E.Sc.
Thesis, University of Western Ontario, August 1998.

[135] Dam ian Trybus. Electric Field Approximation Using Mesh Tech
niques in a Distributed Environment. In Proceedings of the Elec
trica l and Computer Engineering Graduate Research Symposium, May
2001.

[136] J ir i Vlach and Kishore Shinghal. Computer Methods fo r C ircuit Analysis
and Design. Van Nostrand Reinhold Company, 1983.

[137] H eribert Vollmer. Relations Among Parallel and Sequential Com
putation Models. In Joxan Jafar and Roland H.C. Yap, editors, Con
currency and Parallelism, Programming, Networking and Security, vol
ume 1179 of Lecture Notes In Computer Science. Springer, December
1996.

[138] V lad im ir Vuksan. DHCP mini-HOWTO. Internet, Ju ly 2000.
http://www.linux.org/docs/ldp/howto/m ini/DHCP/index.htm l.

[139] Chen Wang and Yong Meng Teo. A Framework for Exploiting Ob
ject Parallelism in Distributed Systems. In Roy W illiam s M ar
ian Bubak, Hamideh Afsarmanesh and Bob Hertzberger, editors, High
Performance Computing and Networking, volume 1823 of Lecture Notes
In Computer Science. Springer, 2000.

[140] Y . Yan, X. Zhang, and Y. Song. An effective and prac
tical performance prediction model for parallel computing
on non-dedicated heterogeneous NOW. Internet, Oct 1996.
http: //citeseer. nj. nec. com/yan96effective.html.

[141] Akiyama Yutaka, Kentaro Onizuka, Tamotsu Noguchi, and Makoto
Ando. Biological- and Chemical- Parallel Applications on a PC
Cluster. In A Pukuda C Polychronopoulos, J. Kazuki and S Tom ita, ed
itors, High Performance Computing, ISHPC’99, Lecture Notes In Com
puter Science. Springer, 1999.

[142] Andrea Zavanella. Skel-BSP: Performance Portability for Skeletal
Programming. In Roy W illiam s M arian Bubak, Hamideh Afsarmanesh

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.linux.org/docs/ldp/howto/mini/DHCP/index.html

www.manaraa.com

BIBLIOGRAPHY 181

and Bob Hertzberger, editors, High Performance Computing and Net
working, volume 1823 of Lecture Notes In Computer Science. Springer,
2000.

[143] S ijun Zeng and Sivarama P. Dandamudi. Centralized Architecture
for Parallel Query Processing on Networks of Workstations.
In Alfons Hoekstra Peter Sloot, M arian Bubak and Bob Hertzberger,
editors, High-Performance Computing and Networking, volume 1593 of
Lecture Notes In Computer Science. Springer, 1999.

[144] X . Zhang, Z. Xu, and L. Sun. Semi-empirical mul
tiprocessor performance predictions. Internet, 1995.
http: / / cites eer. nj. nec. com/95872, html.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Index

2D-FFT, 82, 105

A lgorithm
Exponent Evaluation, 73
Parallel

2D-FFT, 83
M a trix M u ltip lica tion , 75
Mesh Calculations, 96

Sequential
2D-FFT, 83
M a trix M u ltip lica tion , 74
Mesh Calculations, 95

Apparatus, 47
Application

Cluster, 76
Applications, 72

Beowulf, 3, 8
Boot, 53, 66

ROM, 53
Boot ROM, 70
BOOTP, 66

Client, 56
Client-Server, 61
Cluster, 47

2D-FFT, 86
Applications, 72

M a trix M u ltip lica tion , 73
Mesh Calculations, 94

Hardware, 47
Server, 49

M a trix M u ltip lica tion , 76

Member, 52
Hardware, 52
Software, 53

Mesh Calculations, 98
Network, 61
Server, 48

Software, 49
Theory, 6

Cluster Computer
Architecture, 10
Uses, 8

C luster computer, 2
Communications, 21
Computer

Parallel, 7
Illus tra tion , 7

Computer Architecture
von Neumann, 6

CoW, 3

data
experimental, 107

Data Transfer, 21
DHCP, 66

Client-Server conversation, 68
Diskless, 56
DMS, 14

Threads, 20

Efficiency, 29
E lectric Field, 94
Ethernet, 57
experimental data, 107

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

INDEX 183

FFT, 9, 82
2D, 82

F lynn ’s Taxonomy, 10

Hub, 57

I/O , 17
Bandw idth, 17
Latency, 17

IP, 17

Kernel, 50, 55
C luster Member, 55
Server, 50

LAN , 2, 17
Linda, 16
Linux, 3, 8, 50

Kernel, 50

M a trix M u ltip lica tion , 9, 73
Mesh Calculations, 94
M IM D , 10, 16
M ISD, 10
M PI, 16
M ultithreaded Application, 103

Network, 61
Connection, 57
Interface Card, 57
Topology, 58

Network Boot, 53, 66
NFS, 55, 66, 70
NIC, 57
NoW, 3
NUM A, 11, 14

Parallel
2DFFT, 83
Computer, 7
Exponent Evaluation, 73
Massively, 10

M a trix M u ltip lica tion , 75
Mesh Calculations, 96

Parallel Computation
Why, 1

Parallel Processing
Examples, 24
Performance, 26

Performance, 26
Process, 19
PVM , 16

ROM, 53

Scalability, 59
Server, 48
SIMD, 10
SISD, 10
SMP, 4, 10, 11, 13, 50
SMS, 11

Threads, 20
SpeedUp, 28

Superlinear, 28

TC P /IP , 17, 63
TFTP, 66, 69

Client-Server conversation, 70
Thread, 20, 103

Server code for m a trix m u ltip li
cation, 105

Topology, 58

UM A, 11, 13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

V ita

NAM E:

PLACE OF BIRTH:

YEAR OF BIRTH:

POST-SECONDARY
EDUCATIO N
AND DEGREES:

HONOURS AND
AWARDS:

RELATED W ORK
EXPERIENCE:

Damian Trybus

Wroclaw, Poland

1969

U niversity of Western Ontario
London, Ontario
1993-1997 B.E.Sc.

U niversity of Western Ontario
London, Ontario
1997-1998 M.E.Sc.

OGGST scholarship recipient 1999, 2000, 2001, 2002

Systems Designer
Ernst & Young.
1997 - 2002

Lecturer
University of Western Ontario
1999 - 2002

Research Assistant
U niversity of Western Ontario
1997 - 2003

Publications:
Performance Analysis of a Dual Processor Workstation Trybus, D., Kucerovsky,
Z., Ieta, A ., Doyle, T. IEEE CCECE02 Proceedings; ISBN: 0-7803-7514-9; vol
ume 2.
Distributed Electric Field Approximation. Cluster Base Computations T ry
bus, D., Kucerovsky, Z., Ieta, A., Doyle, T. IEEE HPCSA02, Proceedings of
the 16th Annual International Symposium on High Performance Computing
Systems and Applications. Moncton, Quebec, Canada; volume 1.
Pressure Dependent Corona Discharge in Selected Hydrocarbons Ieta, A ., Kucerovsky,
Z. Greason W ., Trybus D. Proceedings of the 4th International Power Systems
Conference. Timisoara, Romania

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

